{"title":"对称对和分支定律","authors":"Paul-Émile Paradan","doi":"10.1016/j.indag.2024.03.009","DOIUrl":null,"url":null,"abstract":"Let be a compact connected Lie group and let be a subgroup fixed by an involution. A classical result assures that the -action on the flag variety of admits a finite number of orbits. In this article we propose a formula for the branching coefficients of the symmetric pair that is parametrized by .","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric pairs and branching laws\",\"authors\":\"Paul-Émile Paradan\",\"doi\":\"10.1016/j.indag.2024.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a compact connected Lie group and let be a subgroup fixed by an involution. A classical result assures that the -action on the flag variety of admits a finite number of orbits. In this article we propose a formula for the branching coefficients of the symmetric pair that is parametrized by .\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.03.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.03.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let be a compact connected Lie group and let be a subgroup fixed by an involution. A classical result assures that the -action on the flag variety of admits a finite number of orbits. In this article we propose a formula for the branching coefficients of the symmetric pair that is parametrized by .