对称对和分支定律

IF 0.5 4区 数学 Q3 MATHEMATICS
Paul-Émile Paradan
{"title":"对称对和分支定律","authors":"Paul-Émile Paradan","doi":"10.1016/j.indag.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span><span> be a compact connected Lie group and let </span><span><math><mi>H</mi></math></span> be a subgroup fixed by an involution. A classical result assures that the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ℂ</mi></mrow></msub></math></span>-action on the flag variety <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span> admits a finite number of orbits. In this article we propose a formula for the branching coefficients of the symmetric pair <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></math></span> that is parametrized by <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>ℂ</mi></mrow></msub><mo>∖</mo><mi>F</mi></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 675-702"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric pairs and branching laws\",\"authors\":\"Paul-Émile Paradan\",\"doi\":\"10.1016/j.indag.2024.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span><span> be a compact connected Lie group and let </span><span><math><mi>H</mi></math></span> be a subgroup fixed by an involution. A classical result assures that the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ℂ</mi></mrow></msub></math></span>-action on the flag variety <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span> admits a finite number of orbits. In this article we propose a formula for the branching coefficients of the symmetric pair <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></math></span> that is parametrized by <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>ℂ</mi></mrow></msub><mo>∖</mo><mi>F</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 2\",\"pages\":\"Pages 675-702\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000168\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设是一个紧密相连的李群,假设是一个由内卷固定的子群。一个经典的结果保证了在的旗变上的-作用有有限个轨道。在本文中,我们提出了一个对称对的分支系数公式,其参数为 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric pairs and branching laws
Let G be a compact connected Lie group and let H be a subgroup fixed by an involution. A classical result assures that the H-action on the flag variety F of G admits a finite number of orbits. In this article we propose a formula for the branching coefficients of the symmetric pair (G,H) that is parametrized by HF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信