I. A. Popov, O. L. Hamidullin, L. M. Amirova, I. A. Popov
{"title":"利用固定热流计和差示扫描量热计的温度调制方法研究含有不同增强材料的 CFRP 的热物理性质","authors":"I. A. Popov, O. L. Hamidullin, L. M. Amirova, I. A. Popov","doi":"10.1134/s0018151x23050139","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper studies the thermal conductivity and specific heat capacity of carbon fiber reinforced plastic (CFRP) with various reinforcements using the methods of a stationary heat flow (SHF) and differential scanning calorimetry with temperature modulation. The values of the thermal conductivity and heat capacity, as well as their dependence on temperature, are established in the temperature range from –20 to 100°C. The changes in the thermal conductivity range from 0.400 to 0.515 W/(m K); and the specific heat capacity coefficient, from 923 to 984 J/(kg K). The results obtained can be used to calculate and design systems and installations using PCMs as structural materials and to calculate the parameters of the technological process for the production of these materials.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"157 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of the Thermophysical Properties of CFRP with Different Reinforcements by Methods of a Stationary Heat Flow and Differential Scanning Calorimeter with Temperature Modulation\",\"authors\":\"I. A. Popov, O. L. Hamidullin, L. M. Amirova, I. A. Popov\",\"doi\":\"10.1134/s0018151x23050139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper studies the thermal conductivity and specific heat capacity of carbon fiber reinforced plastic (CFRP) with various reinforcements using the methods of a stationary heat flow (SHF) and differential scanning calorimetry with temperature modulation. The values of the thermal conductivity and heat capacity, as well as their dependence on temperature, are established in the temperature range from –20 to 100°C. The changes in the thermal conductivity range from 0.400 to 0.515 W/(m K); and the specific heat capacity coefficient, from 923 to 984 J/(kg K). The results obtained can be used to calculate and design systems and installations using PCMs as structural materials and to calculate the parameters of the technological process for the production of these materials.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23050139\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23050139","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Research of the Thermophysical Properties of CFRP with Different Reinforcements by Methods of a Stationary Heat Flow and Differential Scanning Calorimeter with Temperature Modulation
Abstract
The paper studies the thermal conductivity and specific heat capacity of carbon fiber reinforced plastic (CFRP) with various reinforcements using the methods of a stationary heat flow (SHF) and differential scanning calorimetry with temperature modulation. The values of the thermal conductivity and heat capacity, as well as their dependence on temperature, are established in the temperature range from –20 to 100°C. The changes in the thermal conductivity range from 0.400 to 0.515 W/(m K); and the specific heat capacity coefficient, from 923 to 984 J/(kg K). The results obtained can be used to calculate and design systems and installations using PCMs as structural materials and to calculate the parameters of the technological process for the production of these materials.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.