还原群作用的交映复杂性

Avraham Aizenbud, Dmitry Gourevitch
{"title":"还原群作用的交映复杂性","authors":"Avraham Aizenbud, Dmitry Gourevitch","doi":"10.1016/j.indag.2024.03.010","DOIUrl":null,"url":null,"abstract":"Let a complex algebraic reductive group act on a complex algebraic manifold . For a -invariant subvariety of the nilpotent cone we define a notion of -symplectic complexity of . This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of -complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic complexity of reductive group actions\",\"authors\":\"Avraham Aizenbud, Dmitry Gourevitch\",\"doi\":\"10.1016/j.indag.2024.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let a complex algebraic reductive group act on a complex algebraic manifold . For a -invariant subvariety of the nilpotent cone we define a notion of -symplectic complexity of . This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of -complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.03.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.03.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让复代数还原群作用于复代数流形 .对于零势锥的-不变子变,我们定义了一个-交映复杂性的概念。 这个概念概括了 Vinberg(1986)中定义的复杂性概念。我们证明了这一概念的几个性质,并将其与艾曾布德和古雷维奇(2024)中定义的-复杂性概念联系起来,因为它与表示论有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic complexity of reductive group actions
Let a complex algebraic reductive group act on a complex algebraic manifold . For a -invariant subvariety of the nilpotent cone we define a notion of -symplectic complexity of . This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of -complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信