{"title":"还原群作用的交映复杂性","authors":"Avraham Aizenbud, Dmitry Gourevitch","doi":"10.1016/j.indag.2024.03.010","DOIUrl":null,"url":null,"abstract":"Let a complex algebraic reductive group act on a complex algebraic manifold . For a -invariant subvariety of the nilpotent cone we define a notion of -symplectic complexity of . This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of -complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic complexity of reductive group actions\",\"authors\":\"Avraham Aizenbud, Dmitry Gourevitch\",\"doi\":\"10.1016/j.indag.2024.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let a complex algebraic reductive group act on a complex algebraic manifold . For a -invariant subvariety of the nilpotent cone we define a notion of -symplectic complexity of . This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of -complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.03.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.03.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let a complex algebraic reductive group act on a complex algebraic manifold . For a -invariant subvariety of the nilpotent cone we define a notion of -symplectic complexity of . This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of -complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.