还原群作用的交映复杂性

IF 0.5 4区 数学 Q3 MATHEMATICS
Avraham Aizenbud, Dmitry Gourevitch
{"title":"还原群作用的交映复杂性","authors":"Avraham Aizenbud,&nbsp;Dmitry Gourevitch","doi":"10.1016/j.indag.2024.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let a complex algebraic reductive group <span><math><mi>G</mi></math></span> act on a complex algebraic manifold <span><math><mi>X</mi></math></span>. For a <span><math><mi>G</mi></math></span>-invariant subvariety <span><math><mi>Ξ</mi></math></span> of the nilpotent cone <span><math><mrow><mi>N</mi><mrow><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow><mo>⊂</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> we define a notion of <span><math><mi>Ξ</mi></math></span>-symplectic complexity of <span><math><mi>X</mi></math></span>. This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of <span><math><mi>Ξ</mi></math></span>-complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 703-712"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic complexity of reductive group actions\",\"authors\":\"Avraham Aizenbud,&nbsp;Dmitry Gourevitch\",\"doi\":\"10.1016/j.indag.2024.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let a complex algebraic reductive group <span><math><mi>G</mi></math></span> act on a complex algebraic manifold <span><math><mi>X</mi></math></span>. For a <span><math><mi>G</mi></math></span>-invariant subvariety <span><math><mi>Ξ</mi></math></span> of the nilpotent cone <span><math><mrow><mi>N</mi><mrow><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow><mo>⊂</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> we define a notion of <span><math><mi>Ξ</mi></math></span>-symplectic complexity of <span><math><mi>X</mi></math></span>. This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of <span><math><mi>Ξ</mi></math></span>-complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 2\",\"pages\":\"Pages 703-712\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000193\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000193","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让复代数还原群作用于复代数流形 .对于零势锥的-不变子变,我们定义了一个-交映复杂性的概念。 这个概念概括了 Vinberg(1986)中定义的复杂性概念。我们证明了这一概念的几个性质,并将其与艾曾布德和古雷维奇(2024)中定义的-复杂性概念联系起来,因为它与表示论有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic complexity of reductive group actions
Let a complex algebraic reductive group G act on a complex algebraic manifold X. For a G-invariant subvariety Ξ of the nilpotent cone N(g)g we define a notion of Ξ-symplectic complexity of X. This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of Ξ-complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信