基于卡尔曼滤波器的叶片抛光自适应阻抗控制方法

IF 2.9 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS
{"title":"基于卡尔曼滤波器的叶片抛光自适应阻抗控制方法","authors":"","doi":"10.1007/s00170-024-13401-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Robotic force control is crucial for precise polishing and has a significant influence on the final effects. The blade has a free-form surface in space, and the curvature changes drastically, making traditional impedance control feedback untimely. To solve this problem, this paper proposes an adaptive impedance control method for blade polishing based on Kalman filter. The force data is denoised by Kalman filtering to obtain the real force data, then the data is gravity compensated to obtain the real polishing force. The method analyzes the influences of stiffness change and displacement change on the polishing force, and establishes a stiffness and displacement coupling compensation model. The method achieves timely feedback when the robot copes with unknown environmental stiffness changes. In addition, the Lyapunov function is applied to verify the stability of the method during implementation. Four processing conditions are simulated by using Matlab Simulink. The results indicate that the proposed method can provide faster response and higher force tracking accuracy by adjusting the reference position when the environment changes. In the experiment of polishing blade, the roughness is reduced to below Ra0.32 μm and fluctuation range of polishing force is within ±1 N. The force control method performance is significantly improved and the blade surface quality is effectively improved.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive impedance control method for blade polishing based on the Kalman filter\",\"authors\":\"\",\"doi\":\"10.1007/s00170-024-13401-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Robotic force control is crucial for precise polishing and has a significant influence on the final effects. The blade has a free-form surface in space, and the curvature changes drastically, making traditional impedance control feedback untimely. To solve this problem, this paper proposes an adaptive impedance control method for blade polishing based on Kalman filter. The force data is denoised by Kalman filtering to obtain the real force data, then the data is gravity compensated to obtain the real polishing force. The method analyzes the influences of stiffness change and displacement change on the polishing force, and establishes a stiffness and displacement coupling compensation model. The method achieves timely feedback when the robot copes with unknown environmental stiffness changes. In addition, the Lyapunov function is applied to verify the stability of the method during implementation. Four processing conditions are simulated by using Matlab Simulink. The results indicate that the proposed method can provide faster response and higher force tracking accuracy by adjusting the reference position when the environment changes. In the experiment of polishing blade, the roughness is reduced to below Ra0.32 μm and fluctuation range of polishing force is within ±1 N. The force control method performance is significantly improved and the blade surface quality is effectively improved.</p>\",\"PeriodicalId\":50345,\"journal\":{\"name\":\"International Journal of Advanced Manufacturing Technology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00170-024-13401-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13401-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 机器人力控制是精确抛光的关键,对最终效果有重大影响。叶片在空间呈自由曲面,曲率变化剧烈,传统的阻抗控制反馈不及时。为解决这一问题,本文提出了一种基于卡尔曼滤波器的叶片抛光自适应阻抗控制方法。通过卡尔曼滤波对力数据进行去噪处理,得到真实的力数据,然后对数据进行重力补偿,得到真实的抛光力。该方法分析了刚度变化和位移变化对抛光力的影响,建立了刚度和位移耦合补偿模型。该方法实现了机器人应对未知环境刚度变化时的及时反馈。此外,还应用了 Lyapunov 函数来验证该方法在实施过程中的稳定性。使用 Matlab Simulink 模拟了四种处理条件。结果表明,当环境发生变化时,所提出的方法可以通过调整参考位置来提供更快的响应速度和更高的力跟踪精度。在抛光叶片的实验中,粗糙度降低到 Ra0.32 μm 以下,抛光力的波动范围在 ±1 N 以内,力控制方法的性能显著提高,有效改善了叶片的表面质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive impedance control method for blade polishing based on the Kalman filter

Abstract

Robotic force control is crucial for precise polishing and has a significant influence on the final effects. The blade has a free-form surface in space, and the curvature changes drastically, making traditional impedance control feedback untimely. To solve this problem, this paper proposes an adaptive impedance control method for blade polishing based on Kalman filter. The force data is denoised by Kalman filtering to obtain the real force data, then the data is gravity compensated to obtain the real polishing force. The method analyzes the influences of stiffness change and displacement change on the polishing force, and establishes a stiffness and displacement coupling compensation model. The method achieves timely feedback when the robot copes with unknown environmental stiffness changes. In addition, the Lyapunov function is applied to verify the stability of the method during implementation. Four processing conditions are simulated by using Matlab Simulink. The results indicate that the proposed method can provide faster response and higher force tracking accuracy by adjusting the reference position when the environment changes. In the experiment of polishing blade, the roughness is reduced to below Ra0.32 μm and fluctuation range of polishing force is within ±1 N. The force control method performance is significantly improved and the blade surface quality is effectively improved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
17.60%
发文量
2008
审稿时长
62 days
期刊介绍: The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信