Jiwoong Heo , Sungjin Hwang , Jucheol Moon , Jaehwan You , Hansung Kim , Jaehyuk Cha , Kwanguk (Kenny) Kim
{"title":"行动不便者交通模式检测框架","authors":"Jiwoong Heo , Sungjin Hwang , Jucheol Moon , Jaehwan You , Hansung Kim , Jaehyuk Cha , Kwanguk (Kenny) Kim","doi":"10.1080/15472450.2024.2329901","DOIUrl":null,"url":null,"abstract":"<div><div>Transportation mode detection (TMD) is an important computational technique that aids human life at the social and individual levels. However, previous studies on TMD were focused on people without mobility disabilities, and research involving people with mobility disability is limited. Therefore, this study aimed to provide a TMD framework for people with mobility disability. We propose a method for data acquisition, and acquired data pertaining to 120 participants including manual and electric wheelchairs for 15,350 min. We analyzed the acquired data to determine the characteristics of each transportation mode, and applied machine learning and deep learning models to TMD. Our results showed that a recurrent neural network, known as long short-term memory, could classify five transportation modes (still, manual wheelchair, electric wheelchair, subway, and car) for people with and without disabilities, with an accuracy of 96.17%. Our results will be beneficial for enhancing the quality of life and enabling the social inclusion of people with mobility disabilities.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"29 5","pages":"Pages 518-533"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework of transportation mode detection for people with mobility disability\",\"authors\":\"Jiwoong Heo , Sungjin Hwang , Jucheol Moon , Jaehwan You , Hansung Kim , Jaehyuk Cha , Kwanguk (Kenny) Kim\",\"doi\":\"10.1080/15472450.2024.2329901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transportation mode detection (TMD) is an important computational technique that aids human life at the social and individual levels. However, previous studies on TMD were focused on people without mobility disabilities, and research involving people with mobility disability is limited. Therefore, this study aimed to provide a TMD framework for people with mobility disability. We propose a method for data acquisition, and acquired data pertaining to 120 participants including manual and electric wheelchairs for 15,350 min. We analyzed the acquired data to determine the characteristics of each transportation mode, and applied machine learning and deep learning models to TMD. Our results showed that a recurrent neural network, known as long short-term memory, could classify five transportation modes (still, manual wheelchair, electric wheelchair, subway, and car) for people with and without disabilities, with an accuracy of 96.17%. Our results will be beneficial for enhancing the quality of life and enabling the social inclusion of people with mobility disabilities.</div></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"29 5\",\"pages\":\"Pages 518-533\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245024000185\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245024000185","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
A framework of transportation mode detection for people with mobility disability
Transportation mode detection (TMD) is an important computational technique that aids human life at the social and individual levels. However, previous studies on TMD were focused on people without mobility disabilities, and research involving people with mobility disability is limited. Therefore, this study aimed to provide a TMD framework for people with mobility disability. We propose a method for data acquisition, and acquired data pertaining to 120 participants including manual and electric wheelchairs for 15,350 min. We analyzed the acquired data to determine the characteristics of each transportation mode, and applied machine learning and deep learning models to TMD. Our results showed that a recurrent neural network, known as long short-term memory, could classify five transportation modes (still, manual wheelchair, electric wheelchair, subway, and car) for people with and without disabilities, with an accuracy of 96.17%. Our results will be beneficial for enhancing the quality of life and enabling the social inclusion of people with mobility disabilities.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.