作为非衍射贝塞尔晶格光场叠加的非同轴加速波

Israel Julián-Macías, Gabriel Martínez-Niconoff, Gilberto Silva-Ortigoza, and Carolina Rickenstorff-Parrao
{"title":"作为非衍射贝塞尔晶格光场叠加的非同轴加速波","authors":"Israel Julián-Macías, Gabriel Martínez-Niconoff, Gilberto Silva-Ortigoza, and Carolina Rickenstorff-Parrao","doi":"10.1364/josaa.518866","DOIUrl":null,"url":null,"abstract":"In the first part of this work, we introduce a monochromatic solution to the scalar wave equation in free space, defined by a superposition of monochromatic nondiffracting half Bessel-lattice optical fields, which is determined by two scalar functions; one is defined on frequency space, and the other is a complete integral to the eikonal equation in free space. We obtain expressions for the geometrical wavefronts, the caustic region, and the Poynting vector. We highlight that this solution is stable under small perturbations because it is characterized by a caustic of the hyperbolic umbilical type. In the second part, we introduce the corresponding solution to the Maxwell equations in free space.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparaxial accelerating waves as a superposition of nondiffracting Bessel-lattice optical fields\",\"authors\":\"Israel Julián-Macías, Gabriel Martínez-Niconoff, Gilberto Silva-Ortigoza, and Carolina Rickenstorff-Parrao\",\"doi\":\"10.1364/josaa.518866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first part of this work, we introduce a monochromatic solution to the scalar wave equation in free space, defined by a superposition of monochromatic nondiffracting half Bessel-lattice optical fields, which is determined by two scalar functions; one is defined on frequency space, and the other is a complete integral to the eikonal equation in free space. We obtain expressions for the geometrical wavefronts, the caustic region, and the Poynting vector. We highlight that this solution is stable under small perturbations because it is characterized by a caustic of the hyperbolic umbilical type. In the second part, we introduce the corresponding solution to the Maxwell equations in free space.\",\"PeriodicalId\":501620,\"journal\":{\"name\":\"Journal of the Optical Society of America A\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josaa.518866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.518866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作的第一部分,我们介绍了自由空间标量波方程的单色解,它由单色非衍射半贝塞尔晶格光场的叠加定义,由两个标量函数决定;其中一个定义在频率空间上,另一个是自由空间中 eikonal 方程的完全积分。我们得到了几何波面、苛求区和波因特矢量的表达式。我们强调,这种解在微小扰动下是稳定的,因为它的特征是双曲脐型苛求。在第二部分,我们将介绍自由空间中麦克斯韦方程的相应解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparaxial accelerating waves as a superposition of nondiffracting Bessel-lattice optical fields
In the first part of this work, we introduce a monochromatic solution to the scalar wave equation in free space, defined by a superposition of monochromatic nondiffracting half Bessel-lattice optical fields, which is determined by two scalar functions; one is defined on frequency space, and the other is a complete integral to the eikonal equation in free space. We obtain expressions for the geometrical wavefronts, the caustic region, and the Poynting vector. We highlight that this solution is stable under small perturbations because it is characterized by a caustic of the hyperbolic umbilical type. In the second part, we introduce the corresponding solution to the Maxwell equations in free space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信