关于有限交换环的零分图的 L(2, 1) 标记

Annayat Ali, Rameez Raja
{"title":"关于有限交换环的零分图的 L(2, 1) 标记","authors":"Annayat Ali, Rameez Raja","doi":"10.1007/s13226-024-00574-8","DOIUrl":null,"url":null,"abstract":"<p>For a simple graph <span>\\(\\mathcal {G}= (\\mathcal {V}, \\mathcal {E})\\)</span>, an <i>L</i>(2, 1)-labeling is an assignment of non-negative integer labels to vertices of <span>\\(\\mathcal {G}\\)</span>. An <i>L</i>(2, 1)-labeling of <span>\\(\\mathcal {G}\\)</span> must satisfy two conditions: adjacent vertices in <span>\\(\\mathcal {G}\\)</span> should get labels which differ by at least two, and vertices at a distance of two from each other should get distinct labels. The <span>\\(\\lambda \\)</span>-number of <span>\\(\\mathcal {G}\\)</span>, denoted by <span>\\(\\lambda (\\mathcal {G})\\)</span>, represents the smallest positive integer <span>\\(\\ell \\)</span> for which an <i>L</i>(2, 1)-labeling exists, the vertices of <span>\\(\\mathcal {G}\\)</span> are provided labels from the set <span>\\(\\{0, 1, \\dots , \\ell \\}\\)</span>. Let <span>\\(\\Gamma (R)\\)</span> be a zero-divisor graph of a finite commutative ring <i>R</i> with unity. In <span>\\(\\Gamma (R)\\)</span>, vertices represent zero-divisors of <i>R</i>, and two vertices <i>x</i> and <i>y</i> are adjacent if and only if <span>\\(xy = 0\\)</span> in <i>R</i>. The methodology of the research involves a detailed investigation into the structural aspects of zero-divisor graphs associated with specific classes of local and mixed rings, such as <span>\\(\\mathbb {Z}_{p^n}\\)</span>, <span>\\(\\mathbb {Z}_{p^n} \\times \\mathbb {Z}_{q^m}\\)</span>, and <span>\\(\\mathbb {F}_{q}\\times \\mathbb {Z}_{p^n}\\)</span>. This exploration leads us to compute the exact value of <i>L</i>(2, 1)-labeling number of these graphs.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On L(2, 1)-labeling of zero-divisor graphs of finite commutative rings\",\"authors\":\"Annayat Ali, Rameez Raja\",\"doi\":\"10.1007/s13226-024-00574-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a simple graph <span>\\\\(\\\\mathcal {G}= (\\\\mathcal {V}, \\\\mathcal {E})\\\\)</span>, an <i>L</i>(2, 1)-labeling is an assignment of non-negative integer labels to vertices of <span>\\\\(\\\\mathcal {G}\\\\)</span>. An <i>L</i>(2, 1)-labeling of <span>\\\\(\\\\mathcal {G}\\\\)</span> must satisfy two conditions: adjacent vertices in <span>\\\\(\\\\mathcal {G}\\\\)</span> should get labels which differ by at least two, and vertices at a distance of two from each other should get distinct labels. The <span>\\\\(\\\\lambda \\\\)</span>-number of <span>\\\\(\\\\mathcal {G}\\\\)</span>, denoted by <span>\\\\(\\\\lambda (\\\\mathcal {G})\\\\)</span>, represents the smallest positive integer <span>\\\\(\\\\ell \\\\)</span> for which an <i>L</i>(2, 1)-labeling exists, the vertices of <span>\\\\(\\\\mathcal {G}\\\\)</span> are provided labels from the set <span>\\\\(\\\\{0, 1, \\\\dots , \\\\ell \\\\}\\\\)</span>. Let <span>\\\\(\\\\Gamma (R)\\\\)</span> be a zero-divisor graph of a finite commutative ring <i>R</i> with unity. In <span>\\\\(\\\\Gamma (R)\\\\)</span>, vertices represent zero-divisors of <i>R</i>, and two vertices <i>x</i> and <i>y</i> are adjacent if and only if <span>\\\\(xy = 0\\\\)</span> in <i>R</i>. The methodology of the research involves a detailed investigation into the structural aspects of zero-divisor graphs associated with specific classes of local and mixed rings, such as <span>\\\\(\\\\mathbb {Z}_{p^n}\\\\)</span>, <span>\\\\(\\\\mathbb {Z}_{p^n} \\\\times \\\\mathbb {Z}_{q^m}\\\\)</span>, and <span>\\\\(\\\\mathbb {F}_{q}\\\\times \\\\mathbb {Z}_{p^n}\\\\)</span>. This exploration leads us to compute the exact value of <i>L</i>(2, 1)-labeling number of these graphs.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00574-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00574-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个简单的图(\mathcal {G}= (\mathcal {V}, \mathcal {E})\),一个 L(2, 1)-labeling 是分配给 \(\mathcal {G}\) 的顶点的非负整数标签。L(2, 1)标签必须满足两个条件:在 \(\mathcal {G}\) 中相邻的顶点应该得到至少相差两个的标签,并且相距两个的顶点应该得到不同的标签。\(\lambda (\mathcal {G})\) 的 \(\lambda \)-数,用 \(\lambda (\mathcal {G})\) 表示,代表存在 L(2、1)标签存在, \(\mathcal {G}\) 的顶点从集合 \(\{0, 1, \dots , \ell \}\) 中获得标签。让 \(\Gamma (R)\) 是具有统一性的有限交换环 R 的零因子图。在 \(\Gamma (R)\)中,顶点代表 R 的零二维,当且仅当 R 中 \(xy = 0\) 时,两个顶点 x 和 y 是相邻的。研究方法包括对与特定类别的局部环和混合环相关的零分维图的结构方面进行详细研究,如 \(\mathbb {Z}_{p^n}\), \(\mathbb {Z}_{p^n} \times\mathbb {Z}_{q^m}\), 和 \(\mathbb {F}_{q}\times\mathbb {Z}_{p^n}/)。通过这种探索,我们可以计算出这些图的 L(2, 1) 标记数的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On L(2, 1)-labeling of zero-divisor graphs of finite commutative rings

On L(2, 1)-labeling of zero-divisor graphs of finite commutative rings

For a simple graph \(\mathcal {G}= (\mathcal {V}, \mathcal {E})\), an L(2, 1)-labeling is an assignment of non-negative integer labels to vertices of \(\mathcal {G}\). An L(2, 1)-labeling of \(\mathcal {G}\) must satisfy two conditions: adjacent vertices in \(\mathcal {G}\) should get labels which differ by at least two, and vertices at a distance of two from each other should get distinct labels. The \(\lambda \)-number of \(\mathcal {G}\), denoted by \(\lambda (\mathcal {G})\), represents the smallest positive integer \(\ell \) for which an L(2, 1)-labeling exists, the vertices of \(\mathcal {G}\) are provided labels from the set \(\{0, 1, \dots , \ell \}\). Let \(\Gamma (R)\) be a zero-divisor graph of a finite commutative ring R with unity. In \(\Gamma (R)\), vertices represent zero-divisors of R, and two vertices x and y are adjacent if and only if \(xy = 0\) in R. The methodology of the research involves a detailed investigation into the structural aspects of zero-divisor graphs associated with specific classes of local and mixed rings, such as \(\mathbb {Z}_{p^n}\), \(\mathbb {Z}_{p^n} \times \mathbb {Z}_{q^m}\), and \(\mathbb {F}_{q}\times \mathbb {Z}_{p^n}\). This exploration leads us to compute the exact value of L(2, 1)-labeling number of these graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信