改善血液动力学的斜面形轴向氧合器

Benedikt Franke, Leonid Goubergrits
{"title":"改善血液动力学的斜面形轴向氧合器","authors":"Benedikt Franke, Leonid Goubergrits","doi":"10.1101/2024.03.19.24304532","DOIUrl":null,"url":null,"abstract":"Oxygenators are a lifesaving technology used for blood oxygenation and decarboxylation in case of acute respiratory failure, chronic lung disease, and during open-heart surgery. Devices typically consist of a bundle of thousands of fiber membranes in a housing, with gas flowing inside the fibers and blood flowing in the opposite direction outside the fibers. Both ends of the fiber membranes are attached with an adhesive to prevent direct contact between gas and blood. The shape of the volume through which the blood flows is determined by the housing of the oxygenator and the internal end surfaces of the bonded parts of the fiber-membrane bundle. The traditional potting process results in a volume shape that is associated with stagnation zones, which are known to promote thrombus formation. In this study, an adapted potting process is proposed which results in a blood compartment with beveled end faces of the glued bundle parts. Using a numerical study, we have demonstrated that the novel oxygenator design results in optimized flow conditions.","PeriodicalId":501074,"journal":{"name":"medRxiv - Respiratory Medicine","volume":"35 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beveled shaped axial oxygenator with improved hemodynamics\",\"authors\":\"Benedikt Franke, Leonid Goubergrits\",\"doi\":\"10.1101/2024.03.19.24304532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxygenators are a lifesaving technology used for blood oxygenation and decarboxylation in case of acute respiratory failure, chronic lung disease, and during open-heart surgery. Devices typically consist of a bundle of thousands of fiber membranes in a housing, with gas flowing inside the fibers and blood flowing in the opposite direction outside the fibers. Both ends of the fiber membranes are attached with an adhesive to prevent direct contact between gas and blood. The shape of the volume through which the blood flows is determined by the housing of the oxygenator and the internal end surfaces of the bonded parts of the fiber-membrane bundle. The traditional potting process results in a volume shape that is associated with stagnation zones, which are known to promote thrombus formation. In this study, an adapted potting process is proposed which results in a blood compartment with beveled end faces of the glued bundle parts. Using a numerical study, we have demonstrated that the novel oxygenator design results in optimized flow conditions.\",\"PeriodicalId\":501074,\"journal\":{\"name\":\"medRxiv - Respiratory Medicine\",\"volume\":\"35 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Respiratory Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.03.19.24304532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Respiratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.03.19.24304532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧合器是一种救生技术,用于急性呼吸衰竭、慢性肺病和开胸手术期间的血液氧合和脱羧。设备通常由一束装在外壳中的数千个纤维膜组成,气体在纤维内流动,血液则在纤维外以相反的方向流动。纤维膜的两端用粘合剂连接,以防止气体和血液直接接触。血液流经的容积形状由氧合器的外壳和纤维膜束粘合部分的内端面决定。传统的灌封工艺会导致容积形状与停滞区有关,而停滞区会促进血栓的形成。在这项研究中,我们提出了一种经过调整的灌封工艺,这种工艺能使粘合的纤维膜束部件形成一个端面为斜面的血液隔室。通过数值研究,我们证明了这种新型氧合器设计能够优化流动条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beveled shaped axial oxygenator with improved hemodynamics
Oxygenators are a lifesaving technology used for blood oxygenation and decarboxylation in case of acute respiratory failure, chronic lung disease, and during open-heart surgery. Devices typically consist of a bundle of thousands of fiber membranes in a housing, with gas flowing inside the fibers and blood flowing in the opposite direction outside the fibers. Both ends of the fiber membranes are attached with an adhesive to prevent direct contact between gas and blood. The shape of the volume through which the blood flows is determined by the housing of the oxygenator and the internal end surfaces of the bonded parts of the fiber-membrane bundle. The traditional potting process results in a volume shape that is associated with stagnation zones, which are known to promote thrombus formation. In this study, an adapted potting process is proposed which results in a blood compartment with beveled end faces of the glued bundle parts. Using a numerical study, we have demonstrated that the novel oxygenator design results in optimized flow conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信