SO (N, ℂ)的广义斯普林格表示的最大值特性

IF 0.9 2区 数学 Q2 MATHEMATICS
Ruben La
{"title":"SO (N, ℂ)的广义斯普林格表示的最大值特性","authors":"Ruben La","doi":"10.1093/imrn/rnae041","DOIUrl":null,"url":null,"abstract":"Let $C$ be a unipotent class of $G=\\textrm{SO}(N,\\mathbb{C})$, $\\mathcal{E}$ an irreducible $G$-equivariant local system on $C$. The generalized Springer representation $\\rho (C,\\mathcal{E})$ appears in the top cohomology of some variety. Let $\\bar \\rho (C,\\mathcal{E})$ be the representation obtained by summing over all cohomology groups of this variety. It is well known that $\\rho (C,\\mathcal{E})$ appears in $\\bar \\rho (C,\\mathcal{E})$ with multiplicity $1$ and that its Springer support $C$ is strictly minimal in the closure ordering among the Springer supports of the irreducbile subrepresentations of $\\bar \\rho (C,\\mathcal{E})$. Suppose $C$ is parametrized by an orthogonal partition with only odd parts. We prove that $\\bar \\rho (C,\\mathcal{E})$ (resp. $\\textrm{sgn}\\otimes \\bar \\rho (C,\\mathcal{E})$) has a unique multiplicity 1 “maximal” subrepresentation $\\rho ^{\\textrm{max}}$ (resp. “minimal” subrepresentation $\\textrm{sgn}\\otimes \\rho ^{\\textrm{max}}$), where $\\textrm{sgn}$ is the sign representation. These are analogues of results for $\\textrm{Sp}(2n,\\mathbb{C})$ by Waldspurger.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"20 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximality Properties of Generalized Springer Representations of SO (N, ℂ)\",\"authors\":\"Ruben La\",\"doi\":\"10.1093/imrn/rnae041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $C$ be a unipotent class of $G=\\\\textrm{SO}(N,\\\\mathbb{C})$, $\\\\mathcal{E}$ an irreducible $G$-equivariant local system on $C$. The generalized Springer representation $\\\\rho (C,\\\\mathcal{E})$ appears in the top cohomology of some variety. Let $\\\\bar \\\\rho (C,\\\\mathcal{E})$ be the representation obtained by summing over all cohomology groups of this variety. It is well known that $\\\\rho (C,\\\\mathcal{E})$ appears in $\\\\bar \\\\rho (C,\\\\mathcal{E})$ with multiplicity $1$ and that its Springer support $C$ is strictly minimal in the closure ordering among the Springer supports of the irreducbile subrepresentations of $\\\\bar \\\\rho (C,\\\\mathcal{E})$. Suppose $C$ is parametrized by an orthogonal partition with only odd parts. We prove that $\\\\bar \\\\rho (C,\\\\mathcal{E})$ (resp. $\\\\textrm{sgn}\\\\otimes \\\\bar \\\\rho (C,\\\\mathcal{E})$) has a unique multiplicity 1 “maximal” subrepresentation $\\\\rho ^{\\\\textrm{max}}$ (resp. “minimal” subrepresentation $\\\\textrm{sgn}\\\\otimes \\\\rho ^{\\\\textrm{max}}$), where $\\\\textrm{sgn}$ is the sign representation. These are analogues of results for $\\\\textrm{Sp}(2n,\\\\mathbb{C})$ by Waldspurger.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae041\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $C$ 是$G=\textrm{SO}(N,\mathbb{C})$ 的单能类,$\mathcal{E}$ 是在 $C$ 上的不可还原的 $G$ 平方局部系统。广义的斯普林格表示 $\rho (C,\mathcal{E})$ 出现在某个品种的顶同调中。让$\bar \rho (C,\mathcal{E})$ 是通过对这个变化的所有同调群求和得到的表示。众所周知,$\rho (C,\mathcal{E})$ 出现在$\bar \rho (C,\mathcal{E})$ 中的倍率为 1$,并且它的 Springer 支持 $C$ 在 $\bar \rho (C,\mathcal{E})$ 的不可还原子表示的 Springer 支持的闭包排序中是严格最小的。假设 $C$ 被一个只有奇数部分的正交分割所参数化。我们证明 $\bar \rho (C,\mathcal{E})$ (或者 $\textrm{sgn}\otimes \bar \rho (C,\mathcal{E})$ )有一个唯一的乘数为 1 的 "最大 "子表示 $\rho ^\{textrm{max}}$ (或者 $\textrm{sgn}\otimes \bar \rho (C,\mathcal{E})$ )。"最小 "子表示 $\textrm{sgn}\otimes \rho ^{textrm{max}}$),其中 $\textrm{sgn}$ 是符号表示。这些是 Waldspurger 对 $\textrm{Sp}(2n,\mathbb{C})$的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximality Properties of Generalized Springer Representations of SO (N, ℂ)
Let $C$ be a unipotent class of $G=\textrm{SO}(N,\mathbb{C})$, $\mathcal{E}$ an irreducible $G$-equivariant local system on $C$. The generalized Springer representation $\rho (C,\mathcal{E})$ appears in the top cohomology of some variety. Let $\bar \rho (C,\mathcal{E})$ be the representation obtained by summing over all cohomology groups of this variety. It is well known that $\rho (C,\mathcal{E})$ appears in $\bar \rho (C,\mathcal{E})$ with multiplicity $1$ and that its Springer support $C$ is strictly minimal in the closure ordering among the Springer supports of the irreducbile subrepresentations of $\bar \rho (C,\mathcal{E})$. Suppose $C$ is parametrized by an orthogonal partition with only odd parts. We prove that $\bar \rho (C,\mathcal{E})$ (resp. $\textrm{sgn}\otimes \bar \rho (C,\mathcal{E})$) has a unique multiplicity 1 “maximal” subrepresentation $\rho ^{\textrm{max}}$ (resp. “minimal” subrepresentation $\textrm{sgn}\otimes \rho ^{\textrm{max}}$), where $\textrm{sgn}$ is the sign representation. These are analogues of results for $\textrm{Sp}(2n,\mathbb{C})$ by Waldspurger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信