具有可控共振态的铝掺杂 Bi2Se3 纳米微粒半导体,可提高热电效率

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu
{"title":"具有可控共振态的铝掺杂 Bi2Se3 纳米微粒半导体,可提高热电效率","authors":"Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu","doi":"10.1016/j.mtener.2024.101555","DOIUrl":null,"url":null,"abstract":"The generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly BiSe semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to relatively toxic BiTe. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–BiSe nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–BiSe semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant’s -orbitals with the host’s -orbitals near the Fermi level. The Al–BiSe semiconductors effectively moderate electron concentration and Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (∼20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 WmK. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the BiSe semiconductors and providing a pathway for synthesizing other semiconductor materials.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"8 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Al–doped Bi2Se3 Nanoparticulate Semiconductors with Controlled Resonance States for Enhanced Thermoelectric Efficiency\",\"authors\":\"Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu\",\"doi\":\"10.1016/j.mtener.2024.101555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly BiSe semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to relatively toxic BiTe. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–BiSe nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–BiSe semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant’s -orbitals with the host’s -orbitals near the Fermi level. The Al–BiSe semiconductors effectively moderate electron concentration and Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (∼20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 WmK. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the BiSe semiconductors and providing a pathway for synthesizing other semiconductor materials.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101555\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101555","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与毒性相对较高的 BiTe 相比,环保型 BiSe 半导体的热电功勋值(zT < 0.1)普遍较低,这限制了由此产生的器件的废能转换效率。我们有策略地引入铝(Al)掺杂剂,在费米级附近产生共振态,从而获得了 zT 值更高的 Al-BiSe 纳米微粒半导体。作为电子馈源,这些共振态显著改善了 Al-BiSe 半导体内部的传输特性。理论计算表明,共振态是通过掺杂剂的轨道与费米级附近的宿主轨道杂化而产生的。Al-BiSe 半导体有效地缓和了电子浓度和塞贝克有效质量,从而在 300-473 K 的宽温度范围内实现了 0.57 的超高 zT。纳米粒子尺寸(∼20 nm)有效地阻碍了晶格振动的传播,从而实现了 0.399 WmK 的超低总热导率。与传统的掺杂方法不同,我们的战略性共振掺杂对提高 BiSe 半导体的热电性能至关重要,并为合成其他半导体材料提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Al–doped Bi2Se3 Nanoparticulate Semiconductors with Controlled Resonance States for Enhanced Thermoelectric Efficiency
The generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly BiSe semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to relatively toxic BiTe. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–BiSe nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–BiSe semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant’s -orbitals with the host’s -orbitals near the Fermi level. The Al–BiSe semiconductors effectively moderate electron concentration and Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (∼20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 WmK. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the BiSe semiconductors and providing a pathway for synthesizing other semiconductor materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信