广义球形主成分分析

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Sarah Leyder, Jakob Raymaekers, Tim Verdonck
{"title":"广义球形主成分分析","authors":"Sarah Leyder, Jakob Raymaekers, Tim Verdonck","doi":"10.1007/s11222-024-10413-9","DOIUrl":null,"url":null,"abstract":"<p>Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction of outlying observations can heavily influence most classical statistical methods. In this paper we propose generalized spherical principal component analysis, a new robust version of principal component analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties of the proposed method including influence functions, breakdown values and asymptotic efficiencies are derived. These theoretical results are complemented with an extensive simulation study and two real-data examples. We illustrate that generalized spherical principal component analysis can combine great robustness with solid efficiency properties, in addition to a low computational cost.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized spherical principal component analysis\",\"authors\":\"Sarah Leyder, Jakob Raymaekers, Tim Verdonck\",\"doi\":\"10.1007/s11222-024-10413-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction of outlying observations can heavily influence most classical statistical methods. In this paper we propose generalized spherical principal component analysis, a new robust version of principal component analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties of the proposed method including influence functions, breakdown values and asymptotic efficiencies are derived. These theoretical results are complemented with an extensive simulation study and two real-data examples. We illustrate that generalized spherical principal component analysis can combine great robustness with solid efficiency properties, in addition to a low computational cost.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10413-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10413-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

污染数据集的异常值是对统计估计方法的挑战。即使是一小部分离群观测值,也会严重影响大多数经典统计方法。在本文中,我们提出了广义球形主成分分析法,这是一种基于广义空间符号协方差矩阵的新的稳健型主成分分析法。本文推导了所提方法的理论特性,包括影响函数、崩溃值和渐近效率。这些理论结果通过广泛的模拟研究和两个真实数据实例得到了补充。我们说明,除了计算成本低廉之外,广义球形主成分分析法还能将强大的鲁棒性与可靠的效率特性结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized spherical principal component analysis

Generalized spherical principal component analysis

Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction of outlying observations can heavily influence most classical statistical methods. In this paper we propose generalized spherical principal component analysis, a new robust version of principal component analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties of the proposed method including influence functions, breakdown values and asymptotic efficiencies are derived. These theoretical results are complemented with an extensive simulation study and two real-data examples. We illustrate that generalized spherical principal component analysis can combine great robustness with solid efficiency properties, in addition to a low computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信