低分散线性阶次

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Andrey Frolov, Maxim Zubkov
{"title":"低分散线性阶次","authors":"Andrey Frolov, Maxim Zubkov","doi":"10.1093/logcom/exae008","DOIUrl":null,"url":null,"abstract":"In 1998 R. Downey formulated a problem: to describe a property $P$ of classical order types, which guarantees that if $\\mathcal{L}$ is a low linear order and $P$ holds for the order type of $\\mathcal{L}$ then $\\mathcal{L}$ is isomorphic to a computable linear order. We find a new such property $P$. Also, we give an upper bound on a complexity of an isomorphism between computable and low copies and show that this bound is sharp.","PeriodicalId":50162,"journal":{"name":"Journal of Logic and Computation","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low scattered linear orders\",\"authors\":\"Andrey Frolov, Maxim Zubkov\",\"doi\":\"10.1093/logcom/exae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1998 R. Downey formulated a problem: to describe a property $P$ of classical order types, which guarantees that if $\\\\mathcal{L}$ is a low linear order and $P$ holds for the order type of $\\\\mathcal{L}$ then $\\\\mathcal{L}$ is isomorphic to a computable linear order. We find a new such property $P$. Also, we give an upper bound on a complexity of an isomorphism between computable and low copies and show that this bound is sharp.\",\"PeriodicalId\":50162,\"journal\":{\"name\":\"Journal of Logic and Computation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logic and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1093/logcom/exae008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/logcom/exae008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

1998 年,R. Downey 提出了一个问题:描述经典阶类型的一个性质 $P$,它保证如果 $\mathcal{L}$ 是一个低线性阶,并且 $P$ 对 $\mathcal{L}$ 的阶类型成立,那么 $\mathcal{L}$ 与一个可计算的线性阶同构。我们发现了一个新的此类性质 $P$。同时,我们给出了可计算与低副本之间同构的复杂度上限,并证明这个上限是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low scattered linear orders
In 1998 R. Downey formulated a problem: to describe a property $P$ of classical order types, which guarantees that if $\mathcal{L}$ is a low linear order and $P$ holds for the order type of $\mathcal{L}$ then $\mathcal{L}$ is isomorphic to a computable linear order. We find a new such property $P$. Also, we give an upper bound on a complexity of an isomorphism between computable and low copies and show that this bound is sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Logic and Computation
Journal of Logic and Computation 工程技术-计算机:理论方法
CiteScore
1.90
自引率
14.30%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Logic has found application in virtually all aspects of Information Technology, from software engineering and hardware to programming and artificial intelligence. Indeed, logic, artificial intelligence and theoretical computing are influencing each other to the extent that a new interdisciplinary area of Logic and Computation is emerging. The Journal of Logic and Computation aims to promote the growth of logic and computing, including, among others, the following areas of interest: Logical Systems, such as classical and non-classical logic, constructive logic, categorical logic, modal logic, type theory, feasible maths.... Logical issues in logic programming, knowledge-based systems and automated reasoning; logical issues in knowledge representation, such as non-monotonic reasoning and systems of knowledge and belief; logics and semantics of programming; specification and verification of programs and systems; applications of logic in hardware and VLSI, natural language, concurrent computation, planning, and databases. The bulk of the content is technical scientific papers, although letters, reviews, and discussions, as well as relevant conference reviews, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信