封闭 G2 结构的空间。I. 连接

IF 0.6 4区 数学 Q3 MATHEMATICS
Pengfei Xu, Kai Zheng
{"title":"封闭 G2 结构的空间。I. 连接","authors":"Pengfei Xu, Kai Zheng","doi":"10.1093/qmath/haae004","DOIUrl":null,"url":null,"abstract":"In this article, we develop foundational theory for geometries of the space of closed G2-structures in a given cohomology class as an infinite-dimensional manifold. We construct Levi-Civita connections for Sobolev-type metrics, formulate geodesic equations and analyze the variational structures of torsion-free G2-structures under these Sobolev-type metrics.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"160 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The space of closed G2-structures. I. Connections\",\"authors\":\"Pengfei Xu, Kai Zheng\",\"doi\":\"10.1093/qmath/haae004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we develop foundational theory for geometries of the space of closed G2-structures in a given cohomology class as an infinite-dimensional manifold. We construct Levi-Civita connections for Sobolev-type metrics, formulate geodesic equations and analyze the variational structures of torsion-free G2-structures under these Sobolev-type metrics.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们发展了作为无限维流形的给定同调类中封闭 G2 结构空间的几何基础理论。我们为索波列夫型度量构建了 Levi-Civita 连接,提出了测地方程,并分析了这些索波列夫型度量下的无扭 G2 结构的变分结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The space of closed G2-structures. I. Connections
In this article, we develop foundational theory for geometries of the space of closed G2-structures in a given cohomology class as an infinite-dimensional manifold. We construct Levi-Civita connections for Sobolev-type metrics, formulate geodesic equations and analyze the variational structures of torsion-free G2-structures under these Sobolev-type metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信