凸多边形包含:将二次方时间改进为近似线性时间

Timothy M. Chan, Isaac M. Hair
{"title":"凸多边形包含:将二次方时间改进为近似线性时间","authors":"Timothy M. Chan, Isaac M. Hair","doi":"arxiv-2403.13292","DOIUrl":null,"url":null,"abstract":"We revisit a standard polygon containment problem: given a convex $k$-gon $P$\nand a convex $n$-gon $Q$ in the plane, find a placement of $P$ inside $Q$ under\ntranslation and rotation (if it exists), or more generally, find the largest\ncopy of $P$ inside $Q$ under translation, rotation, and scaling. Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and\nAgarwal, Amenta, and Sharir (1998) all required $\\Omega(n^2)$ time, even in the\nsimplest $k=3$ case. We present a significantly faster new algorithm for $k=3$\nachieving $O(n$polylog $n)$ running time. Moreover, we extend the result for\ngeneral $k$, achieving $O(k^{O(1/\\varepsilon)}n^{1+\\varepsilon})$ running time\nfor any $\\varepsilon>0$. Along the way, we also prove a new $O(k^{O(1)}n$polylog $n)$ bound on the\nnumber of similar copies of $P$ inside $Q$ that have 4 vertices of $P$ in\ncontact with the boundary of $Q$ (assuming general position input), disproving\na conjecture by Agarwal, Amenta, and Sharir (1998).","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex Polygon Containment: Improving Quadratic to Near Linear Time\",\"authors\":\"Timothy M. Chan, Isaac M. Hair\",\"doi\":\"arxiv-2403.13292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit a standard polygon containment problem: given a convex $k$-gon $P$\\nand a convex $n$-gon $Q$ in the plane, find a placement of $P$ inside $Q$ under\\ntranslation and rotation (if it exists), or more generally, find the largest\\ncopy of $P$ inside $Q$ under translation, rotation, and scaling. Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and\\nAgarwal, Amenta, and Sharir (1998) all required $\\\\Omega(n^2)$ time, even in the\\nsimplest $k=3$ case. We present a significantly faster new algorithm for $k=3$\\nachieving $O(n$polylog $n)$ running time. Moreover, we extend the result for\\ngeneral $k$, achieving $O(k^{O(1/\\\\varepsilon)}n^{1+\\\\varepsilon})$ running time\\nfor any $\\\\varepsilon>0$. Along the way, we also prove a new $O(k^{O(1)}n$polylog $n)$ bound on the\\nnumber of similar copies of $P$ inside $Q$ that have 4 vertices of $P$ in\\ncontact with the boundary of $Q$ (assuming general position input), disproving\\na conjecture by Agarwal, Amenta, and Sharir (1998).\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.13292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们重温了一个标准的多边形包含问题:给定平面上一个凸 $k$ 形 $P$ 和一个凸 $n$ 形 $Q$,在平移和旋转(如果存在的话)条件下找到 $P$ 在 $Q$ 内部的位置,或者更一般地说,在平移、旋转和缩放条件下找到 $P$ 在 $Q$ 内部的最大副本。查泽尔(Chazelle,1983 年)、沙里尔和托莱多(Sharir and Toledo,1994 年)以及阿加瓦尔、阿门塔和沙里尔(Agarwal, Amenta, and Sharir,1998 年)以前的算法都需要 $\Omega(n^2)$ 时间,即使在最简单的 $k=3$ 情况下也是如此。我们针对 $k=3$ 提出了一种速度更快的新算法,运行时间达到 $O(n$对数 $n)$。此外,我们还将这一结果扩展到了一般的 $k$,在任何 $\varepsilon>0$ 的情况下都能达到 $O(k^{O(1/\varepsilon)}n^{1+\varepsilon})$ 的运行时间。同时,我们还证明了一个新的$O(k^{O(1)}n$polylog $n)$约束,即在$Q$内有$P$的 4 个顶点与$Q$边界接触的$P$相似副本的数量(假设为一般位置输入),推翻了阿加瓦尔、阿门塔和沙里尔(1998 年)的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex Polygon Containment: Improving Quadratic to Near Linear Time
We revisit a standard polygon containment problem: given a convex $k$-gon $P$ and a convex $n$-gon $Q$ in the plane, find a placement of $P$ inside $Q$ under translation and rotation (if it exists), or more generally, find the largest copy of $P$ inside $Q$ under translation, rotation, and scaling. Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and Sharir (1998) all required $\Omega(n^2)$ time, even in the simplest $k=3$ case. We present a significantly faster new algorithm for $k=3$ achieving $O(n$polylog $n)$ running time. Moreover, we extend the result for general $k$, achieving $O(k^{O(1/\varepsilon)}n^{1+\varepsilon})$ running time for any $\varepsilon>0$. Along the way, we also prove a new $O(k^{O(1)}n$polylog $n)$ bound on the number of similar copies of $P$ inside $Q$ that have 4 vertices of $P$ in contact with the boundary of $Q$ (assuming general position input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信