通过双线性方法求解 (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani 方程的交互解

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Shuting Bai, Xiaojun Yin, Na Cao, Liyang Xu
{"title":"通过双线性方法求解 (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani 方程的交互解","authors":"Shuting Bai, Xiaojun Yin, Na Cao, Liyang Xu","doi":"10.1142/s0217984924503202","DOIUrl":null,"url":null,"abstract":"<p>Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"53 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction solutions of (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation via bilinear method\",\"authors\":\"Shuting Bai, Xiaojun Yin, Na Cao, Liyang Xu\",\"doi\":\"10.1142/s0217984924503202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503202\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503202","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用双线性神经网络方法(BNNM)和符号计算系统 Mathematica,解释了如何求 (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani (KdVSKR) 方程的精确解。就激活函数和权重系数而言,BNNM 比传统的符号计算方法更能吸引用户。通过修改激活函数,可以开发出多种解法,并扩展精确解法的类别。激活函数的多功能性使其能够生成多种具有理论和实际用途的解。分析解是通过使用双层类型获得的,而流氓波解和混合解则是通过使用单层类型获得的。然后使用各种三维图、二维图和密度图来说明这些波的演变过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction solutions of (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation via bilinear method

Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信