Edi Muškardin, Martin Tappler, Bernhard K. Aichernig, Ingo Pill
{"title":"随机反应系统的主动模型学习(扩展版)","authors":"Edi Muškardin, Martin Tappler, Bernhard K. Aichernig, Ingo Pill","doi":"10.1007/s10270-024-01158-0","DOIUrl":null,"url":null,"abstract":"<p>Black-box systems are inherently hard to verify. Many verification techniques, like model checking, require formal models as a basis. However, such models often do not exist, or they might be outdated. Active automata learning helps to address this issue by offering to automatically infer formal models from system interactions. Hence, automata learning has been receiving much attention in the verification community in recent years. This led to various efficiency improvements, paving the way toward industrial applications. Most research, however, has been focusing on deterministic systems. In this article, we present an approach to efficiently learn models of stochastic reactive systems. Our approach adapts <span>\\(L^*\\)</span>-based learning for Markov decision processes, which we improve and extend to stochastic Mealy machines. When compared with previous work, our evaluation demonstrates that the proposed optimizations and adaptations to stochastic Mealy machines can reduce learning costs by an order of magnitude while improving the accuracy of learned models.</p>","PeriodicalId":49507,"journal":{"name":"Software and Systems Modeling","volume":"46 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active model learning of stochastic reactive systems (extended version)\",\"authors\":\"Edi Muškardin, Martin Tappler, Bernhard K. Aichernig, Ingo Pill\",\"doi\":\"10.1007/s10270-024-01158-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Black-box systems are inherently hard to verify. Many verification techniques, like model checking, require formal models as a basis. However, such models often do not exist, or they might be outdated. Active automata learning helps to address this issue by offering to automatically infer formal models from system interactions. Hence, automata learning has been receiving much attention in the verification community in recent years. This led to various efficiency improvements, paving the way toward industrial applications. Most research, however, has been focusing on deterministic systems. In this article, we present an approach to efficiently learn models of stochastic reactive systems. Our approach adapts <span>\\\\(L^*\\\\)</span>-based learning for Markov decision processes, which we improve and extend to stochastic Mealy machines. When compared with previous work, our evaluation demonstrates that the proposed optimizations and adaptations to stochastic Mealy machines can reduce learning costs by an order of magnitude while improving the accuracy of learned models.</p>\",\"PeriodicalId\":49507,\"journal\":{\"name\":\"Software and Systems Modeling\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software and Systems Modeling\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10270-024-01158-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Systems Modeling","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10270-024-01158-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Active model learning of stochastic reactive systems (extended version)
Black-box systems are inherently hard to verify. Many verification techniques, like model checking, require formal models as a basis. However, such models often do not exist, or they might be outdated. Active automata learning helps to address this issue by offering to automatically infer formal models from system interactions. Hence, automata learning has been receiving much attention in the verification community in recent years. This led to various efficiency improvements, paving the way toward industrial applications. Most research, however, has been focusing on deterministic systems. In this article, we present an approach to efficiently learn models of stochastic reactive systems. Our approach adapts \(L^*\)-based learning for Markov decision processes, which we improve and extend to stochastic Mealy machines. When compared with previous work, our evaluation demonstrates that the proposed optimizations and adaptations to stochastic Mealy machines can reduce learning costs by an order of magnitude while improving the accuracy of learned models.
期刊介绍:
We invite authors to submit papers that discuss and analyze research challenges and experiences pertaining to software and system modeling languages, techniques, tools, practices and other facets. The following are some of the topic areas that are of special interest, but the journal publishes on a wide range of software and systems modeling concerns:
Domain-specific models and modeling standards;
Model-based testing techniques;
Model-based simulation techniques;
Formal syntax and semantics of modeling languages such as the UML;
Rigorous model-based analysis;
Model composition, refinement and transformation;
Software Language Engineering;
Modeling Languages in Science and Engineering;
Language Adaptation and Composition;
Metamodeling techniques;
Measuring quality of models and languages;
Ontological approaches to model engineering;
Generating test and code artifacts from models;
Model synthesis;
Methodology;
Model development tool environments;
Modeling Cyberphysical Systems;
Data intensive modeling;
Derivation of explicit models from data;
Case studies and experience reports with significant modeling lessons learned;
Comparative analyses of modeling languages and techniques;
Scientific assessment of modeling practices