内爆、收缩和摩尔-立川

IF 0.6 4区 数学 Q3 MATHEMATICS
Andrew Dancer, Frances Kirwan, Johan Martens
{"title":"内爆、收缩和摩尔-立川","authors":"Andrew Dancer, Frances Kirwan, Johan Martens","doi":"10.1142/s0129167x24410040","DOIUrl":null,"url":null,"abstract":"<p>We give a survey of the implosion construction, extending some of its aspects relating to hypertoric geometry from type <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> to a general reductive group, and interpret it in the context of the Moore–Tachikawa category. We use these ideas to discuss how the contraction construction in symplectic geometry can be generalized to the hyperkähler or complex symplectic situation.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implosion, contraction and Moore–Tachikawa\",\"authors\":\"Andrew Dancer, Frances Kirwan, Johan Martens\",\"doi\":\"10.1142/s0129167x24410040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a survey of the implosion construction, extending some of its aspects relating to hypertoric geometry from type <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span> to a general reductive group, and interpret it in the context of the Moore–Tachikawa category. We use these ideas to discuss how the contraction construction in symplectic geometry can be generalized to the hyperkähler or complex symplectic situation.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24410040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24410040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考察了内爆构造,将其与高折射几何有关的某些方面从 A 型扩展到一般还原群,并在摩尔-立川范畴的背景下对其进行了解释。我们利用这些观点来讨论如何将交点几何中的内卷构造推广到超交点或复交点情形中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implosion, contraction and Moore–Tachikawa

We give a survey of the implosion construction, extending some of its aspects relating to hypertoric geometry from type A to a general reductive group, and interpret it in the context of the Moore–Tachikawa category. We use these ideas to discuss how the contraction construction in symplectic geometry can be generalized to the hyperkähler or complex symplectic situation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信