Athanasios Kritikos, Ravendra Singh, George Tsilomelekis, Fernando J. Muzzio
{"title":"用于活性药物成分 (API) 先进连续生产的 SMX 静态混合器的新型 CFD 模型","authors":"Athanasios Kritikos, Ravendra Singh, George Tsilomelekis, Fernando J. Muzzio","doi":"10.1007/s12247-024-09813-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The growing demand for effective pharmaceutical treatments, notably amidst health challenges like COVID, highlights the urgency for improved drug production techniques. This study examines the simulation of the Sulzer SMX static mixer in laminar conditions for the continuous pharmaceutical manufacturing of significant pharmaceuticals, notably imatinib.</p><h3>Methods</h3><p>Computational fluid dynamics (CFD) were employed to assess the SMX static mixer’s hydrodynamics and mixing performance. Emphasis was on mixing efficiency and residence time distributions (RTD) in a mixer with SMX elements. We refined the model’s reliability and explored the correlation between friction factor and Reynolds number. The Definitive Screening Design (DSD) was used to determine major factors impacting mixer dynamics.</p><h3>Results</h3><p>We established a novel correlation between friction factor and Reynolds number. The study reveal that lower flowrates significantly impact mixing efficiency, with different solvents inducing mixing delays. The RTD study identified the total inlet flowrate’s influence on distribution, with higher flowrates leading to more distinct RTD profiles and decreased axial mixing. The screening analysis highlighted flowrate’s dominance over other factors in determining mixing efficiency and residence time.</p><h3>Conclusions</h3><p>Through precise computational fluid dynamics (CFD) simulations, the study affirms the robustness of the developed model and underscores the novel correlation between the friction factor and Reynolds number. Insights into flow rate’s pivotal role in dictating mixer efficiency and residence time distribution are discerned, culminating in a comprehensive guide for refining static mixer operations for optimized drug manufacturing.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"19 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel CFD Model of SMX Static Mixer Used in Advanced Continuous Manufacturing of Active Pharmaceutical Ingredients (API)\",\"authors\":\"Athanasios Kritikos, Ravendra Singh, George Tsilomelekis, Fernando J. Muzzio\",\"doi\":\"10.1007/s12247-024-09813-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>The growing demand for effective pharmaceutical treatments, notably amidst health challenges like COVID, highlights the urgency for improved drug production techniques. This study examines the simulation of the Sulzer SMX static mixer in laminar conditions for the continuous pharmaceutical manufacturing of significant pharmaceuticals, notably imatinib.</p><h3>Methods</h3><p>Computational fluid dynamics (CFD) were employed to assess the SMX static mixer’s hydrodynamics and mixing performance. Emphasis was on mixing efficiency and residence time distributions (RTD) in a mixer with SMX elements. We refined the model’s reliability and explored the correlation between friction factor and Reynolds number. The Definitive Screening Design (DSD) was used to determine major factors impacting mixer dynamics.</p><h3>Results</h3><p>We established a novel correlation between friction factor and Reynolds number. The study reveal that lower flowrates significantly impact mixing efficiency, with different solvents inducing mixing delays. The RTD study identified the total inlet flowrate’s influence on distribution, with higher flowrates leading to more distinct RTD profiles and decreased axial mixing. The screening analysis highlighted flowrate’s dominance over other factors in determining mixing efficiency and residence time.</p><h3>Conclusions</h3><p>Through precise computational fluid dynamics (CFD) simulations, the study affirms the robustness of the developed model and underscores the novel correlation between the friction factor and Reynolds number. Insights into flow rate’s pivotal role in dictating mixer efficiency and residence time distribution are discerned, culminating in a comprehensive guide for refining static mixer operations for optimized drug manufacturing.</p></div>\",\"PeriodicalId\":656,\"journal\":{\"name\":\"Journal of Pharmaceutical Innovation\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical Innovation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12247-024-09813-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09813-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A Novel CFD Model of SMX Static Mixer Used in Advanced Continuous Manufacturing of Active Pharmaceutical Ingredients (API)
Purpose
The growing demand for effective pharmaceutical treatments, notably amidst health challenges like COVID, highlights the urgency for improved drug production techniques. This study examines the simulation of the Sulzer SMX static mixer in laminar conditions for the continuous pharmaceutical manufacturing of significant pharmaceuticals, notably imatinib.
Methods
Computational fluid dynamics (CFD) were employed to assess the SMX static mixer’s hydrodynamics and mixing performance. Emphasis was on mixing efficiency and residence time distributions (RTD) in a mixer with SMX elements. We refined the model’s reliability and explored the correlation between friction factor and Reynolds number. The Definitive Screening Design (DSD) was used to determine major factors impacting mixer dynamics.
Results
We established a novel correlation between friction factor and Reynolds number. The study reveal that lower flowrates significantly impact mixing efficiency, with different solvents inducing mixing delays. The RTD study identified the total inlet flowrate’s influence on distribution, with higher flowrates leading to more distinct RTD profiles and decreased axial mixing. The screening analysis highlighted flowrate’s dominance over other factors in determining mixing efficiency and residence time.
Conclusions
Through precise computational fluid dynamics (CFD) simulations, the study affirms the robustness of the developed model and underscores the novel correlation between the friction factor and Reynolds number. Insights into flow rate’s pivotal role in dictating mixer efficiency and residence time distribution are discerned, culminating in a comprehensive guide for refining static mixer operations for optimized drug manufacturing.
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.