{"title":"来自德萨图、正则图和德萨图的自正交码","authors":"Dean Crnković, Andrea Švob","doi":"10.1007/s00373-024-02763-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give constructions of self-orthogonal codes from orbit matrices of Deza graphs, normally regular digraphs and Deza digraphs in terms of a definition given by Wang and Feng. These constructions can also be applied to adjacency matrices of the mentioned graphs. Since a lot of constructions of Deza graphs, normally regular digraphs and Deza digraphs in the sense of Wang and Feng have been known, the methods presented in this paper give us a rich source of matrices that span self-orthogonal codes.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Orthogonal Codes from Deza Graphs, Normally Regular Digraphs and Deza Digraphs\",\"authors\":\"Dean Crnković, Andrea Švob\",\"doi\":\"10.1007/s00373-024-02763-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we give constructions of self-orthogonal codes from orbit matrices of Deza graphs, normally regular digraphs and Deza digraphs in terms of a definition given by Wang and Feng. These constructions can also be applied to adjacency matrices of the mentioned graphs. Since a lot of constructions of Deza graphs, normally regular digraphs and Deza digraphs in the sense of Wang and Feng have been known, the methods presented in this paper give us a rich source of matrices that span self-orthogonal codes.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02763-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02763-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Self-Orthogonal Codes from Deza Graphs, Normally Regular Digraphs and Deza Digraphs
In this paper, we give constructions of self-orthogonal codes from orbit matrices of Deza graphs, normally regular digraphs and Deza digraphs in terms of a definition given by Wang and Feng. These constructions can also be applied to adjacency matrices of the mentioned graphs. Since a lot of constructions of Deza graphs, normally regular digraphs and Deza digraphs in the sense of Wang and Feng have been known, the methods presented in this paper give us a rich source of matrices that span self-orthogonal codes.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.