使用 SCAPS-1D 仿真软件深入分析基于 In0.7Ga0.3N 的 pn 同结太阳能电池

IF 1.204 Q3 Energy
Arman Rahman, Emran Hossain, Sakhawat Hussain
{"title":"使用 SCAPS-1D 仿真软件深入分析基于 In0.7Ga0.3N 的 pn 同结太阳能电池","authors":"Arman Rahman,&nbsp;Emran Hossain,&nbsp;Sakhawat Hussain","doi":"10.3103/S0003701X23600522","DOIUrl":null,"url":null,"abstract":"<p>An insight analysis of In<sub>0.7</sub>Ga<sub>0.3</sub>N based pn homo-junction solar cell structure has been carried out using simulation software. A novel solar cell structure of <i>n</i>+ buffer contact layer/<i>n</i> window layer/<i>p</i> absorber layer/<i>p</i>+ back absorber layer has been proposed after device optimization. We have found that under the sun spectrum of AM 1.5 of 1 KW/m<sup>2</sup> operating at 300 K, the solar cell with low series resistance of 3 Ω cm<sup>2</sup>, highly doped (1×10<sup>19</sup> cm<sup>–3</sup>) <i>n</i>+ layer as buffer contact layer and <i>p</i>+ layer of 200 nm thick as back absorber layer on top of back metal contact, enable us to achieve an efficient solar cell. We found that doping concentration of <span>\\(1 \\times {{10}^{{16}}}{\\text{ c}}{{{\\text{m}}}^{{ - 3}}}\\)</span> in both active n and p layer, with 30 nm and 1.0 <span>\\({{\\mu m}}\\)</span> of thickness, respectively, would allow us to achieve short circuit current density of <span>\\(35{{{\\text{ mA}}} \\mathord{\\left/ {\\vphantom {{{\\text{mA}}} {{\\text{c}}{{{\\text{m}}}^{2}}}}} \\right. \\kern-0em} {{\\text{c}}{{{\\text{m}}}^{2}}}}\\)</span>, open circuit voltage of 1.0 V, overall efficiency of 28.32% and fill factor value of 80% from the solar cell. If we could further reduce the series resistance of In<sub>0.7</sub>Ga<sub>0.3</sub>N pn homo-junction solar cell to ideal one, it may allow us to have even higher overall efficiency and fill factor values of 31 and 86%, respectively.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":null,"pages":null},"PeriodicalIF":1.2040,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Insight Analysis of In0.7Ga0.3N Based pn Homo-Junction Solar Cell using SCAPS-1D Simulation Software\",\"authors\":\"Arman Rahman,&nbsp;Emran Hossain,&nbsp;Sakhawat Hussain\",\"doi\":\"10.3103/S0003701X23600522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An insight analysis of In<sub>0.7</sub>Ga<sub>0.3</sub>N based pn homo-junction solar cell structure has been carried out using simulation software. A novel solar cell structure of <i>n</i>+ buffer contact layer/<i>n</i> window layer/<i>p</i> absorber layer/<i>p</i>+ back absorber layer has been proposed after device optimization. We have found that under the sun spectrum of AM 1.5 of 1 KW/m<sup>2</sup> operating at 300 K, the solar cell with low series resistance of 3 Ω cm<sup>2</sup>, highly doped (1×10<sup>19</sup> cm<sup>–3</sup>) <i>n</i>+ layer as buffer contact layer and <i>p</i>+ layer of 200 nm thick as back absorber layer on top of back metal contact, enable us to achieve an efficient solar cell. We found that doping concentration of <span>\\\\(1 \\\\times {{10}^{{16}}}{\\\\text{ c}}{{{\\\\text{m}}}^{{ - 3}}}\\\\)</span> in both active n and p layer, with 30 nm and 1.0 <span>\\\\({{\\\\mu m}}\\\\)</span> of thickness, respectively, would allow us to achieve short circuit current density of <span>\\\\(35{{{\\\\text{ mA}}} \\\\mathord{\\\\left/ {\\\\vphantom {{{\\\\text{mA}}} {{\\\\text{c}}{{{\\\\text{m}}}^{2}}}}} \\\\right. \\\\kern-0em} {{\\\\text{c}}{{{\\\\text{m}}}^{2}}}}\\\\)</span>, open circuit voltage of 1.0 V, overall efficiency of 28.32% and fill factor value of 80% from the solar cell. If we could further reduce the series resistance of In<sub>0.7</sub>Ga<sub>0.3</sub>N pn homo-junction solar cell to ideal one, it may allow us to have even higher overall efficiency and fill factor values of 31 and 86%, respectively.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X23600522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23600522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用仿真软件对基于 In0.7Ga0.3N 的 pn 同结太阳能电池结构进行了深入分析。经过器件优化,提出了一种由 n+ 缓冲接触层/n 窗口层/p 吸收层/p+ 背吸收层组成的新型太阳能电池结构。我们发现,在 1 KW/m2 的 AM 1.5 太阳光谱下,工作温度为 300 K,低串联电阻为 3 Ω cm2、高掺杂(1×1019 cm-3)n+ 层作为缓冲接触层、200 nm 厚的 p+ 层作为背金属接触上面的背吸收层的太阳能电池,可以实现高效太阳能电池。我们发现,在厚度分别为 30 nm 和 1.0 \({{\mu m}}\) 的有源 n 层和 p 层中,掺杂浓度为 1 \times {{10}^{{16}}}{text{ c}}{{{text{m}}^{{ - 3}}\} 的掺杂,可以使我们的短路电流密度达到 35{{\text{ mA}}.\{{text{mA}} {{text{c}}{{\text{c}}{{{\text{m}}}^{2}}}}}\right.\kern-0em} {{\text{c}}{{{\text{m}}}^{2}}}}\)如果我们进一步减小太阳能电池的串联电阻,其开路电压为 1.0 V,总效率为 28.32%,填充因子值为 80%。如果我们能进一步将 In0.7Ga0.3N pn 同结太阳能电池的串联电阻减小到理想值,那么它的总效率和填充因子值可能会更高,分别达到 31% 和 86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Insight Analysis of In0.7Ga0.3N Based pn Homo-Junction Solar Cell using SCAPS-1D Simulation Software

An Insight Analysis of In0.7Ga0.3N Based pn Homo-Junction Solar Cell using SCAPS-1D Simulation Software

An insight analysis of In0.7Ga0.3N based pn homo-junction solar cell structure has been carried out using simulation software. A novel solar cell structure of n+ buffer contact layer/n window layer/p absorber layer/p+ back absorber layer has been proposed after device optimization. We have found that under the sun spectrum of AM 1.5 of 1 KW/m2 operating at 300 K, the solar cell with low series resistance of 3 Ω cm2, highly doped (1×1019 cm–3) n+ layer as buffer contact layer and p+ layer of 200 nm thick as back absorber layer on top of back metal contact, enable us to achieve an efficient solar cell. We found that doping concentration of \(1 \times {{10}^{{16}}}{\text{ c}}{{{\text{m}}}^{{ - 3}}}\) in both active n and p layer, with 30 nm and 1.0 \({{\mu m}}\) of thickness, respectively, would allow us to achieve short circuit current density of \(35{{{\text{ mA}}} \mathord{\left/ {\vphantom {{{\text{mA}}} {{\text{c}}{{{\text{m}}}^{2}}}}} \right. \kern-0em} {{\text{c}}{{{\text{m}}}^{2}}}}\), open circuit voltage of 1.0 V, overall efficiency of 28.32% and fill factor value of 80% from the solar cell. If we could further reduce the series resistance of In0.7Ga0.3N pn homo-junction solar cell to ideal one, it may allow us to have even higher overall efficiency and fill factor values of 31 and 86%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Solar Energy
Applied Solar Energy Energy-Renewable Energy, Sustainability and the Environment
CiteScore
2.50
自引率
0.00%
发文量
0
期刊介绍: Applied Solar Energy  is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信