Cu2O 增强的背表面场使硒基 TiO2/Sb2Se3 薄膜太阳能电池的效率超过 32

IF 1.204 Q3 Energy
Basra Sultana, A. T. M. Saiful Islam, Md. Dulal Haque, Abdul Kuddus
{"title":"Cu2O 增强的背表面场使硒基 TiO2/Sb2Se3 薄膜太阳能电池的效率超过 32","authors":"Basra Sultana,&nbsp;A. T. M. Saiful Islam,&nbsp;Md. Dulal Haque,&nbsp;Abdul Kuddus","doi":"10.3103/S0003701X23601515","DOIUrl":null,"url":null,"abstract":"<p>Antimony (Sb) chalcogenides, particularly antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>), have gained attention as promising semiconductor materials in order to creat and advancement of competitive solar cells. These materials exhibit a range of desirable qualities, such as excellent absorption rate, ability to modify band gap, and plentiful in the crust of the earth. This article describes an antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) absorber based high-efficient thin film solar cell (TFSC) with copper oxide (Cu<sub>2</sub>O) as as back surface field (BSF) by dint of Al/ITO/TiO<sub>2</sub>/Sb<sub>2</sub>Se<sub>3</sub>/Cu<sub>2</sub>O/Ni heterostructure using SCAPS-1D Simulator. This research entails an in-depth assessment of various physical and electrical characteristics of every solar active semiconductorof TiO<sub>2</sub>,Sb<sub>2</sub>Se<sub>3</sub>, and Cu<sub>2</sub>O covering the thickness of each layer, concentration of carrier doping, defect density in the bulk and at the interface, carrier generation rate together with recombination. Initially, the variation in photovoltaic parameters of open circuit voltage (<i>V</i><sub>oc</sub>), short-circuit current density (<i>J</i><sub>sc</sub>), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE) investigated without the BSF layer, followed by a comprehensive analysis on the role of Cu<sub>2</sub>O BSF layer for enhancing cell’s performance explored systematically. The proposed heterostructure shows improved PCE of over 32% (which was 21% without BSF) with <i>J</i><sub>SC</sub> of 37.492 mA/cm<sup>2</sup>, <i>V</i><sub>OC</sub> of 1.024 V, and FF of 83.595%. Thus, the utilisation of a heterostructure comprising Sb<sub>2</sub>Se<sub>3</sub> absorber and copper oxide Cu<sub>2</sub>O BSF layer demonstrates significant promise in the development and production the high-efficiency greenery thin-film solar cells (TFSCs).</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":"59 6","pages":"836 - 850"},"PeriodicalIF":1.2040,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu2O-Enhanced Back Surface Field Empowers Selenium-Based TiO2/Sb2Se3 Thin Film Solar Cells to Achieve Efficiency over 32%\",\"authors\":\"Basra Sultana,&nbsp;A. T. M. Saiful Islam,&nbsp;Md. Dulal Haque,&nbsp;Abdul Kuddus\",\"doi\":\"10.3103/S0003701X23601515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimony (Sb) chalcogenides, particularly antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>), have gained attention as promising semiconductor materials in order to creat and advancement of competitive solar cells. These materials exhibit a range of desirable qualities, such as excellent absorption rate, ability to modify band gap, and plentiful in the crust of the earth. This article describes an antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) absorber based high-efficient thin film solar cell (TFSC) with copper oxide (Cu<sub>2</sub>O) as as back surface field (BSF) by dint of Al/ITO/TiO<sub>2</sub>/Sb<sub>2</sub>Se<sub>3</sub>/Cu<sub>2</sub>O/Ni heterostructure using SCAPS-1D Simulator. This research entails an in-depth assessment of various physical and electrical characteristics of every solar active semiconductorof TiO<sub>2</sub>,Sb<sub>2</sub>Se<sub>3</sub>, and Cu<sub>2</sub>O covering the thickness of each layer, concentration of carrier doping, defect density in the bulk and at the interface, carrier generation rate together with recombination. Initially, the variation in photovoltaic parameters of open circuit voltage (<i>V</i><sub>oc</sub>), short-circuit current density (<i>J</i><sub>sc</sub>), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE) investigated without the BSF layer, followed by a comprehensive analysis on the role of Cu<sub>2</sub>O BSF layer for enhancing cell’s performance explored systematically. The proposed heterostructure shows improved PCE of over 32% (which was 21% without BSF) with <i>J</i><sub>SC</sub> of 37.492 mA/cm<sup>2</sup>, <i>V</i><sub>OC</sub> of 1.024 V, and FF of 83.595%. Thus, the utilisation of a heterostructure comprising Sb<sub>2</sub>Se<sub>3</sub> absorber and copper oxide Cu<sub>2</sub>O BSF layer demonstrates significant promise in the development and production the high-efficiency greenery thin-film solar cells (TFSCs).</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":\"59 6\",\"pages\":\"836 - 850\"},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X23601515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23601515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

摘要锑(Sb)瑀,特别是硒化锑(Sb2Se3),作为一种有前途的半导体材料,在创造和发展有竞争力的太阳能电池方面受到了关注。这些材料表现出一系列令人满意的特性,如出色的吸收率、改变带隙的能力以及在地壳中含量丰富。本文利用 SCAPS-1D 模拟器,通过 Al/ITO/TiO2/Sb2Se3/Cu2O/Ni 异质结构,描述了一种基于硒化锑(Sb2Se3)吸收剂的高效薄膜太阳能电池(TFSC),并以氧化铜(Cu2O)作为背表面场(BSF)。这项研究需要深入评估 TiO2、Sb2Se3 和 Cu2O 等每种太阳能活性半导体的各种物理和电气特性,包括每层的厚度、载流子掺杂浓度、块体和界面上的缺陷密度、载流子生成率和重组。首先,研究了无 BSF 层时开路电压 (Voc)、短路电流密度 (Jsc)、填充因子 (FF)、功率转换效率 (PCE) 和量子效率 (QE) 等光伏参数的变化,然后系统地分析了 Cu2O BSF 层对提高电池性能的作用。所提出的异质结构将 PCE 提高了 32%(无 BSF 时为 21%),JSC 为 37.492 mA/cm2,VOC 为 1.024 V,FF 为 83.595%。因此,利用由 Sb2Se3 吸收体和氧化铜 Cu2O BSF 层组成的异质结构,在开发和生产高效绿色薄膜太阳能电池(TFSCs)方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cu2O-Enhanced Back Surface Field Empowers Selenium-Based TiO2/Sb2Se3 Thin Film Solar Cells to Achieve Efficiency over 32%

Cu2O-Enhanced Back Surface Field Empowers Selenium-Based TiO2/Sb2Se3 Thin Film Solar Cells to Achieve Efficiency over 32%

Cu2O-Enhanced Back Surface Field Empowers Selenium-Based TiO2/Sb2Se3 Thin Film Solar Cells to Achieve Efficiency over 32%

Antimony (Sb) chalcogenides, particularly antimony selenide (Sb2Se3), have gained attention as promising semiconductor materials in order to creat and advancement of competitive solar cells. These materials exhibit a range of desirable qualities, such as excellent absorption rate, ability to modify band gap, and plentiful in the crust of the earth. This article describes an antimony selenide (Sb2Se3) absorber based high-efficient thin film solar cell (TFSC) with copper oxide (Cu2O) as as back surface field (BSF) by dint of Al/ITO/TiO2/Sb2Se3/Cu2O/Ni heterostructure using SCAPS-1D Simulator. This research entails an in-depth assessment of various physical and electrical characteristics of every solar active semiconductorof TiO2,Sb2Se3, and Cu2O covering the thickness of each layer, concentration of carrier doping, defect density in the bulk and at the interface, carrier generation rate together with recombination. Initially, the variation in photovoltaic parameters of open circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE) investigated without the BSF layer, followed by a comprehensive analysis on the role of Cu2O BSF layer for enhancing cell’s performance explored systematically. The proposed heterostructure shows improved PCE of over 32% (which was 21% without BSF) with JSC of 37.492 mA/cm2, VOC of 1.024 V, and FF of 83.595%. Thus, the utilisation of a heterostructure comprising Sb2Se3 absorber and copper oxide Cu2O BSF layer demonstrates significant promise in the development and production the high-efficiency greenery thin-film solar cells (TFSCs).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Solar Energy
Applied Solar Energy Energy-Renewable Energy, Sustainability and the Environment
CiteScore
2.50
自引率
0.00%
发文量
0
期刊介绍: Applied Solar Energy  is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信