{"title":"用于信息级联预测的主题感知屏蔽注意力网络","authors":"Yu Tai, Hongwei Yang, Hui He, Xinglong Wu, Yuanming Shao, Weizhe Zhang, Arun Kumar Sangaiah","doi":"10.1145/3653449","DOIUrl":null,"url":null,"abstract":"<p>Predicting information cascades holds significant practical implications, including applications in public opinion analysis, rumor control, and product recommendation. Existing approaches have generally overlooked the significance of semantic topics in information cascades or disregarded the dissemination relations. Such models are inadequate in capturing the intricate diffusion process within an information network inundated with diverse topics. To address such problems, we propose a neural-based model (named ICP-TMAN) using <underline>T</underline>opic-Aware <underline>M</underline>asked <underline>A</underline>ttentive <underline>N</underline>etwork for <underline>I</underline>nformation <underline>C</underline>ascade <underline>P</underline>rediction to predict the next infected node of an information cascade. First, we encode the topical text into user representation to perceive the user-topic dependency. Next, we employ a masked attentive network to devise the diffusion context to capture the user-context dependency. Finally, we exploit a deep attention mechanism to model historical infected nodes for user embedding enhancement to capture user-history dependency. The results of extensive experiments conducted on three real-world datasets demonstrate the superiority of ICP-TMAN over existing state-of-the-art approaches.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topic-Aware Masked Attentive Network for Information Cascade Prediction\",\"authors\":\"Yu Tai, Hongwei Yang, Hui He, Xinglong Wu, Yuanming Shao, Weizhe Zhang, Arun Kumar Sangaiah\",\"doi\":\"10.1145/3653449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting information cascades holds significant practical implications, including applications in public opinion analysis, rumor control, and product recommendation. Existing approaches have generally overlooked the significance of semantic topics in information cascades or disregarded the dissemination relations. Such models are inadequate in capturing the intricate diffusion process within an information network inundated with diverse topics. To address such problems, we propose a neural-based model (named ICP-TMAN) using <underline>T</underline>opic-Aware <underline>M</underline>asked <underline>A</underline>ttentive <underline>N</underline>etwork for <underline>I</underline>nformation <underline>C</underline>ascade <underline>P</underline>rediction to predict the next infected node of an information cascade. First, we encode the topical text into user representation to perceive the user-topic dependency. Next, we employ a masked attentive network to devise the diffusion context to capture the user-context dependency. Finally, we exploit a deep attention mechanism to model historical infected nodes for user embedding enhancement to capture user-history dependency. The results of extensive experiments conducted on three real-world datasets demonstrate the superiority of ICP-TMAN over existing state-of-the-art approaches.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653449\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653449","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Topic-Aware Masked Attentive Network for Information Cascade Prediction
Predicting information cascades holds significant practical implications, including applications in public opinion analysis, rumor control, and product recommendation. Existing approaches have generally overlooked the significance of semantic topics in information cascades or disregarded the dissemination relations. Such models are inadequate in capturing the intricate diffusion process within an information network inundated with diverse topics. To address such problems, we propose a neural-based model (named ICP-TMAN) using Topic-Aware Masked Attentive Network for Information Cascade Prediction to predict the next infected node of an information cascade. First, we encode the topical text into user representation to perceive the user-topic dependency. Next, we employ a masked attentive network to devise the diffusion context to capture the user-context dependency. Finally, we exploit a deep attention mechanism to model historical infected nodes for user embedding enhancement to capture user-history dependency. The results of extensive experiments conducted on three real-world datasets demonstrate the superiority of ICP-TMAN over existing state-of-the-art approaches.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.