{"title":"长期围栏对中国荒漠草原土壤微生物群落结构和功能的影响","authors":"","doi":"10.1007/s40333-024-0009-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>One of the goals of grazing management in the desert steppe is to improve its ecosystem. However, relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management. In this study, we investigated the diversity and aboveground biomass of <em>Caragana korshinskii</em> Kom. shrub communities in long-term fencing and grazing areas, combined with an analysis of soil physical-chemical properties and genomics, with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe, China. The results showed that fence management (exclosure) increased plant diversity and aboveground biomass in <em>C. korshinskii</em> shrub area and effectively enhanced soil organic carbon (233.94%), available nitrogen (87.77%), and available phosphorus (53.67%) contents. As well, the Shannon indices of soil bacteria and fungi were greater in the fenced plot. Plant-soil changes profoundly affected the alpha- and beta-diversity of soil bacteria. Fence management also altered the soil microbial community structure, significantly increasing the relative abundances of Acidobacteriota (5.31%–8.99%), Chloroflexi (3.99%–5.58%), and Glomeromycota (1.37%–3.28%). The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity. Based on functional predictions, fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions. The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and saprotrophs also significantly increased under fence management. In addition, the differential functional groups of bacteria and fungi were closely related to plant-soil changes. The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"152 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China\",\"authors\":\"\",\"doi\":\"10.1007/s40333-024-0009-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>One of the goals of grazing management in the desert steppe is to improve its ecosystem. However, relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management. In this study, we investigated the diversity and aboveground biomass of <em>Caragana korshinskii</em> Kom. shrub communities in long-term fencing and grazing areas, combined with an analysis of soil physical-chemical properties and genomics, with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe, China. The results showed that fence management (exclosure) increased plant diversity and aboveground biomass in <em>C. korshinskii</em> shrub area and effectively enhanced soil organic carbon (233.94%), available nitrogen (87.77%), and available phosphorus (53.67%) contents. As well, the Shannon indices of soil bacteria and fungi were greater in the fenced plot. Plant-soil changes profoundly affected the alpha- and beta-diversity of soil bacteria. Fence management also altered the soil microbial community structure, significantly increasing the relative abundances of Acidobacteriota (5.31%–8.99%), Chloroflexi (3.99%–5.58%), and Glomeromycota (1.37%–3.28%). The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity. Based on functional predictions, fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions. The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and saprotrophs also significantly increased under fence management. In addition, the differential functional groups of bacteria and fungi were closely related to plant-soil changes. The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.</p>\",\"PeriodicalId\":49169,\"journal\":{\"name\":\"Journal of Arid Land\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Arid Land\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s40333-024-0009-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0009-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China
Abstract
One of the goals of grazing management in the desert steppe is to improve its ecosystem. However, relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management. In this study, we investigated the diversity and aboveground biomass of Caragana korshinskii Kom. shrub communities in long-term fencing and grazing areas, combined with an analysis of soil physical-chemical properties and genomics, with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe, China. The results showed that fence management (exclosure) increased plant diversity and aboveground biomass in C. korshinskii shrub area and effectively enhanced soil organic carbon (233.94%), available nitrogen (87.77%), and available phosphorus (53.67%) contents. As well, the Shannon indices of soil bacteria and fungi were greater in the fenced plot. Plant-soil changes profoundly affected the alpha- and beta-diversity of soil bacteria. Fence management also altered the soil microbial community structure, significantly increasing the relative abundances of Acidobacteriota (5.31%–8.99%), Chloroflexi (3.99%–5.58%), and Glomeromycota (1.37%–3.28%). The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity. Based on functional predictions, fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions. The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and saprotrophs also significantly increased under fence management. In addition, the differential functional groups of bacteria and fungi were closely related to plant-soil changes. The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.