{"title":"论无对称假定的三重交界问题","authors":"Nicholas D. Alikakos, Zhiyuan Geng","doi":"10.1007/s00205-024-01966-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the Allen–Cahn system <span>\\(\\Delta u-W_u(u)=0\\)</span>, <span>\\(u:\\mathbb {R}^2\\rightarrow \\mathbb {R}^2\\)</span>, where <span>\\(W\\in C^2(\\mathbb {R}^2,[0,+\\infty ))\\)</span> is a potential with three global minima. We establish the existence of an entire solution <i>u</i> which possesses a triple junction structure. The main strategy is to study the global minimizer <span>\\(u_\\varepsilon \\)</span> of the variational problem <span>\\(\\min \\int _{B_1} \\left( \\frac{\\varepsilon }{2}\\vert \\nabla u\\vert ^2+\\frac{1}{\\varepsilon }W(u) \\right) \\,\\textrm{d}z\\)</span>, <span>\\(u=g_\\varepsilon \\)</span> on <span>\\(\\partial B_1\\)</span> for some suitable boundary data <span>\\(g_\\varepsilon \\)</span>. The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Triple Junction Problem without Symmetry Hypotheses\",\"authors\":\"Nicholas D. Alikakos, Zhiyuan Geng\",\"doi\":\"10.1007/s00205-024-01966-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the Allen–Cahn system <span>\\\\(\\\\Delta u-W_u(u)=0\\\\)</span>, <span>\\\\(u:\\\\mathbb {R}^2\\\\rightarrow \\\\mathbb {R}^2\\\\)</span>, where <span>\\\\(W\\\\in C^2(\\\\mathbb {R}^2,[0,+\\\\infty ))\\\\)</span> is a potential with three global minima. We establish the existence of an entire solution <i>u</i> which possesses a triple junction structure. The main strategy is to study the global minimizer <span>\\\\(u_\\\\varepsilon \\\\)</span> of the variational problem <span>\\\\(\\\\min \\\\int _{B_1} \\\\left( \\\\frac{\\\\varepsilon }{2}\\\\vert \\\\nabla u\\\\vert ^2+\\\\frac{1}{\\\\varepsilon }W(u) \\\\right) \\\\,\\\\textrm{d}z\\\\)</span>, <span>\\\\(u=g_\\\\varepsilon \\\\)</span> on <span>\\\\(\\\\partial B_1\\\\)</span> for some suitable boundary data <span>\\\\(g_\\\\varepsilon \\\\)</span>. The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01966-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01966-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了 Allen-Cahn 系统 \(\Delta u-W_u(u)=0\), \(u:\mathbb {R}^2\rightarrow \mathbb {R}^2\), 其中 \(W\in C^2(\mathbb {R}^2,[0,+\infty ))\) 是一个具有三个全局最小值的势。我们确定了具有三重结点结构的全解 u 的存在。主要策略是研究变分问题的全局最小值 \(u_\varepsilon\) (\(min \int _{B_1})\leave( \frac{\varepsilon }{2}\vert \nabla u\vert ^2+\frac{1}{\varepsilon }W(u) \right) \,\textrm{d}z\), \(u=g_\varepsilon \) on \(\partial B_1\) for some suitable boundary data \(g_\varepsilon \)。出发点是一个能量下限,它在估计扩散界面的位置和大小方面起着至关重要的作用。我们不对解法或势能强加任何对称性假设。
On the Triple Junction Problem without Symmetry Hypotheses
We investigate the Allen–Cahn system \(\Delta u-W_u(u)=0\), \(u:\mathbb {R}^2\rightarrow \mathbb {R}^2\), where \(W\in C^2(\mathbb {R}^2,[0,+\infty ))\) is a potential with three global minima. We establish the existence of an entire solution u which possesses a triple junction structure. The main strategy is to study the global minimizer \(u_\varepsilon \) of the variational problem \(\min \int _{B_1} \left( \frac{\varepsilon }{2}\vert \nabla u\vert ^2+\frac{1}{\varepsilon }W(u) \right) \,\textrm{d}z\), \(u=g_\varepsilon \) on \(\partial B_1\) for some suitable boundary data \(g_\varepsilon \). The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.