{"title":"论无对称假定的三重交界问题","authors":"Nicholas D. Alikakos, Zhiyuan Geng","doi":"10.1007/s00205-024-01966-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the Allen–Cahn system <span>\\(\\Delta u-W_u(u)=0\\)</span>, <span>\\(u:\\mathbb {R}^2\\rightarrow \\mathbb {R}^2\\)</span>, where <span>\\(W\\in C^2(\\mathbb {R}^2,[0,+\\infty ))\\)</span> is a potential with three global minima. We establish the existence of an entire solution <i>u</i> which possesses a triple junction structure. The main strategy is to study the global minimizer <span>\\(u_\\varepsilon \\)</span> of the variational problem <span>\\(\\min \\int _{B_1} \\left( \\frac{\\varepsilon }{2}\\vert \\nabla u\\vert ^2+\\frac{1}{\\varepsilon }W(u) \\right) \\,\\textrm{d}z\\)</span>, <span>\\(u=g_\\varepsilon \\)</span> on <span>\\(\\partial B_1\\)</span> for some suitable boundary data <span>\\(g_\\varepsilon \\)</span>. The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Triple Junction Problem without Symmetry Hypotheses\",\"authors\":\"Nicholas D. Alikakos, Zhiyuan Geng\",\"doi\":\"10.1007/s00205-024-01966-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the Allen–Cahn system <span>\\\\(\\\\Delta u-W_u(u)=0\\\\)</span>, <span>\\\\(u:\\\\mathbb {R}^2\\\\rightarrow \\\\mathbb {R}^2\\\\)</span>, where <span>\\\\(W\\\\in C^2(\\\\mathbb {R}^2,[0,+\\\\infty ))\\\\)</span> is a potential with three global minima. We establish the existence of an entire solution <i>u</i> which possesses a triple junction structure. The main strategy is to study the global minimizer <span>\\\\(u_\\\\varepsilon \\\\)</span> of the variational problem <span>\\\\(\\\\min \\\\int _{B_1} \\\\left( \\\\frac{\\\\varepsilon }{2}\\\\vert \\\\nabla u\\\\vert ^2+\\\\frac{1}{\\\\varepsilon }W(u) \\\\right) \\\\,\\\\textrm{d}z\\\\)</span>, <span>\\\\(u=g_\\\\varepsilon \\\\)</span> on <span>\\\\(\\\\partial B_1\\\\)</span> for some suitable boundary data <span>\\\\(g_\\\\varepsilon \\\\)</span>. The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"248 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01966-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01966-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了 Allen-Cahn 系统 \(\Delta u-W_u(u)=0\), \(u:\mathbb {R}^2\rightarrow \mathbb {R}^2\), 其中 \(W\in C^2(\mathbb {R}^2,[0,+\infty ))\) 是一个具有三个全局最小值的势。我们确定了具有三重结点结构的全解 u 的存在。主要策略是研究变分问题的全局最小值 \(u_\varepsilon\) (\(min \int _{B_1})\leave( \frac{\varepsilon }{2}\vert \nabla u\vert ^2+\frac{1}{\varepsilon }W(u) \right) \,\textrm{d}z\), \(u=g_\varepsilon \) on \(\partial B_1\) for some suitable boundary data \(g_\varepsilon \)。出发点是一个能量下限,它在估计扩散界面的位置和大小方面起着至关重要的作用。我们不对解法或势能强加任何对称性假设。
On the Triple Junction Problem without Symmetry Hypotheses
We investigate the Allen–Cahn system \(\Delta u-W_u(u)=0\), \(u:\mathbb {R}^2\rightarrow \mathbb {R}^2\), where \(W\in C^2(\mathbb {R}^2,[0,+\infty ))\) is a potential with three global minima. We establish the existence of an entire solution u which possesses a triple junction structure. The main strategy is to study the global minimizer \(u_\varepsilon \) of the variational problem \(\min \int _{B_1} \left( \frac{\varepsilon }{2}\vert \nabla u\vert ^2+\frac{1}{\varepsilon }W(u) \right) \,\textrm{d}z\), \(u=g_\varepsilon \) on \(\partial B_1\) for some suitable boundary data \(g_\varepsilon \). The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.