{"title":"用于图像正规化的平均深度去噪器","authors":"","doi":"10.1007/s10851-024-01181-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Plug-and-Play (PnP) and Regularization-by-Denoising (RED) are recent paradigms for image reconstruction that leverage the power of modern denoisers for image regularization. In particular, they have been shown to deliver state-of-the-art reconstructions with CNN denoisers. Since the regularization is performed in an ad-hoc manner, understanding the convergence of PnP and RED has been an active research area. It was shown in recent works that iterate convergence can be guaranteed if the denoiser is averaged or nonexpansive. However, integrating nonexpansivity with gradient-based learning is challenging, the core issue being that testing nonexpansivity is intractable. Using numerical examples, we show that existing CNN denoisers tend to violate the nonexpansive property, which can cause PnP or RED to diverge. In fact, algorithms for training nonexpansive denoisers either cannot guarantee nonexpansivity or are computationally intensive. In this work, we construct contractive and averaged image denoisers by unfolding splitting-based optimization algorithms applied to wavelet denoising and demonstrate that their regularization capacity for PnP and RED can be matched with CNN denoisers. To our knowledge, this is the first work to propose a simple framework for training contractive denoisers using network unfolding. </p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaged Deep Denoisers for Image Regularization\",\"authors\":\"\",\"doi\":\"10.1007/s10851-024-01181-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Plug-and-Play (PnP) and Regularization-by-Denoising (RED) are recent paradigms for image reconstruction that leverage the power of modern denoisers for image regularization. In particular, they have been shown to deliver state-of-the-art reconstructions with CNN denoisers. Since the regularization is performed in an ad-hoc manner, understanding the convergence of PnP and RED has been an active research area. It was shown in recent works that iterate convergence can be guaranteed if the denoiser is averaged or nonexpansive. However, integrating nonexpansivity with gradient-based learning is challenging, the core issue being that testing nonexpansivity is intractable. Using numerical examples, we show that existing CNN denoisers tend to violate the nonexpansive property, which can cause PnP or RED to diverge. In fact, algorithms for training nonexpansive denoisers either cannot guarantee nonexpansivity or are computationally intensive. In this work, we construct contractive and averaged image denoisers by unfolding splitting-based optimization algorithms applied to wavelet denoising and demonstrate that their regularization capacity for PnP and RED can be matched with CNN denoisers. To our knowledge, this is the first work to propose a simple framework for training contractive denoisers using network unfolding. </p>\",\"PeriodicalId\":16196,\"journal\":{\"name\":\"Journal of Mathematical Imaging and Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Imaging and Vision\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10851-024-01181-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01181-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
摘要 即插即用(PnP)和去噪正则化(RED)是最近的图像重建范例,它们利用现代去噪器的强大功能进行图像正则化。特别是,它们已被证明能利用 CNN 去噪器实现最先进的重建。由于正则化是以临时方式进行的,因此了解 PnP 和 RED 的收敛性一直是一个活跃的研究领域。最近的研究表明,如果去噪器是平均的或非膨胀的,则可以保证迭代收敛。然而,将非膨胀性与基于梯度的学习结合起来具有挑战性,其核心问题是非膨胀性测试难以进行。我们利用数值示例表明,现有的 CNN 去噪器往往会违反非膨胀性特性,从而导致 PnP 或 RED 发散。事实上,训练非膨胀去噪器的算法要么不能保证非膨胀性,要么计算量很大。在这项工作中,我们通过应用于小波去噪的基于分裂的展开优化算法,构建了收缩和平均图像去噪器,并证明其对 PnP 和 RED 的正则化能力可与 CNN 去噪器相媲美。据我们所知,这是首次提出利用网络展开训练收缩去噪器的简单框架。
Plug-and-Play (PnP) and Regularization-by-Denoising (RED) are recent paradigms for image reconstruction that leverage the power of modern denoisers for image regularization. In particular, they have been shown to deliver state-of-the-art reconstructions with CNN denoisers. Since the regularization is performed in an ad-hoc manner, understanding the convergence of PnP and RED has been an active research area. It was shown in recent works that iterate convergence can be guaranteed if the denoiser is averaged or nonexpansive. However, integrating nonexpansivity with gradient-based learning is challenging, the core issue being that testing nonexpansivity is intractable. Using numerical examples, we show that existing CNN denoisers tend to violate the nonexpansive property, which can cause PnP or RED to diverge. In fact, algorithms for training nonexpansive denoisers either cannot guarantee nonexpansivity or are computationally intensive. In this work, we construct contractive and averaged image denoisers by unfolding splitting-based optimization algorithms applied to wavelet denoising and demonstrate that their regularization capacity for PnP and RED can be matched with CNN denoisers. To our knowledge, this is the first work to propose a simple framework for training contractive denoisers using network unfolding.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.