{"title":"基于 RWP-CELF 的移动社交网络中的影响力最大化","authors":"","doi":"10.1007/s00607-024-01276-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Influence maximization (IM) problem for messages propagation is an important topic in mobile social networks. The success of the spreading process depends on the mechanism for selection of the influential user. Beside selection of influential users, the computation and running time should be considered in this mechanism to ensure the accurecy and efficient. In this paper, considering that the overhead of exact computation varies nonlinearly with fluctuations in data size, random algorithm with smoother complexity change was designed to solve the IM problem in combination with greedy algorithm. Firstly, we proposed a method named two-hop neighbor network influence estimator to evaluate the influence of all nodes in the two-hop neighbor network. Then, we developed a novel greedy algorithm, the random walk probability cost-effective with lazy-forward (RWP-CELF) algorithm by modifying cost-effective with lazy-forward (CELF) with random algorithm, which uses 25–50 orders of magnitude less time than the state-of-the-art algorithms. We compared the influence spread effect of RWP-CELF on real datasets with a theoretically proven algorithm that is guaranteed to be approximately optimal. Experiments show that the spread effect of RWP-CELF is comparable to this algorithm, and the running time is much lower than this algorithm.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"19 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence maximization in mobile social networks based on RWP-CELF\",\"authors\":\"\",\"doi\":\"10.1007/s00607-024-01276-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Influence maximization (IM) problem for messages propagation is an important topic in mobile social networks. The success of the spreading process depends on the mechanism for selection of the influential user. Beside selection of influential users, the computation and running time should be considered in this mechanism to ensure the accurecy and efficient. In this paper, considering that the overhead of exact computation varies nonlinearly with fluctuations in data size, random algorithm with smoother complexity change was designed to solve the IM problem in combination with greedy algorithm. Firstly, we proposed a method named two-hop neighbor network influence estimator to evaluate the influence of all nodes in the two-hop neighbor network. Then, we developed a novel greedy algorithm, the random walk probability cost-effective with lazy-forward (RWP-CELF) algorithm by modifying cost-effective with lazy-forward (CELF) with random algorithm, which uses 25–50 orders of magnitude less time than the state-of-the-art algorithms. We compared the influence spread effect of RWP-CELF on real datasets with a theoretically proven algorithm that is guaranteed to be approximately optimal. Experiments show that the spread effect of RWP-CELF is comparable to this algorithm, and the running time is much lower than this algorithm.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01276-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01276-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Influence maximization in mobile social networks based on RWP-CELF
Abstract
Influence maximization (IM) problem for messages propagation is an important topic in mobile social networks. The success of the spreading process depends on the mechanism for selection of the influential user. Beside selection of influential users, the computation and running time should be considered in this mechanism to ensure the accurecy and efficient. In this paper, considering that the overhead of exact computation varies nonlinearly with fluctuations in data size, random algorithm with smoother complexity change was designed to solve the IM problem in combination with greedy algorithm. Firstly, we proposed a method named two-hop neighbor network influence estimator to evaluate the influence of all nodes in the two-hop neighbor network. Then, we developed a novel greedy algorithm, the random walk probability cost-effective with lazy-forward (RWP-CELF) algorithm by modifying cost-effective with lazy-forward (CELF) with random algorithm, which uses 25–50 orders of magnitude less time than the state-of-the-art algorithms. We compared the influence spread effect of RWP-CELF on real datasets with a theoretically proven algorithm that is guaranteed to be approximately optimal. Experiments show that the spread effect of RWP-CELF is comparable to this algorithm, and the running time is much lower than this algorithm.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.