{"title":"圆盘和球面上的不变拉普拉奇谱理论--一种复杂分析方法","authors":"Michael Heins, Annika Moucha, Oliver Roth","doi":"10.4153/s0008414x2400021x","DOIUrl":null,"url":null,"abstract":"<p>The central theme of this paper is the holomorphic spectral theory of the canonical Laplace operator of the complement <img mimesubtype=\"png\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline1.png?pub-status=live\" type=\"\"> of the “complexified unit circle” <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\{(z,w) \\in \\widehat {{\\mathbb C}}^2 \\colon z \\cdot w = 1\\}$</span></span></img></span></span>. We start by singling out a distinguished set of holomorphic eigenfunctions on the bidisk in terms of hypergeometric <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${}_2F_1$</span></span></img></span></span> functions and prove that they provide a spectral decomposition of every holomorphic eigenfunction on the bidisk. As a second step, we identify the maximal domains of definition of these eigenfunctions and show that these maximal domains naturally determine the fine structure of the eigenspaces. Our main result gives an intrinsic classification of all closed Möbius invariant subspaces of eigenspaces of the canonical Laplacian of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\Omega $</span></span></img></span></span>. Generalizing foundational prior work of Helgason and Rudin, this provides a unifying complex analytic framework for the real-analytic eigenvalue theories of both the hyperbolic and spherical Laplace operators on the open unit disk resp. the Riemann sphere and, in particular, shows how they are interrelated with one another.</img></p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral theory of the invariant Laplacian on the disk and the sphere – a complex analysis approach\",\"authors\":\"Michael Heins, Annika Moucha, Oliver Roth\",\"doi\":\"10.4153/s0008414x2400021x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The central theme of this paper is the holomorphic spectral theory of the canonical Laplace operator of the complement <img mimesubtype=\\\"png\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline1.png?pub-status=live\\\" type=\\\"\\\"> of the “complexified unit circle” <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{(z,w) \\\\in \\\\widehat {{\\\\mathbb C}}^2 \\\\colon z \\\\cdot w = 1\\\\}$</span></span></img></span></span>. We start by singling out a distinguished set of holomorphic eigenfunctions on the bidisk in terms of hypergeometric <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${}_2F_1$</span></span></img></span></span> functions and prove that they provide a spectral decomposition of every holomorphic eigenfunction on the bidisk. As a second step, we identify the maximal domains of definition of these eigenfunctions and show that these maximal domains naturally determine the fine structure of the eigenspaces. Our main result gives an intrinsic classification of all closed Möbius invariant subspaces of eigenspaces of the canonical Laplacian of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082628999-0285:S0008414X2400021X:S0008414X2400021X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Omega $</span></span></img></span></span>. Generalizing foundational prior work of Helgason and Rudin, this provides a unifying complex analytic framework for the real-analytic eigenvalue theories of both the hyperbolic and spherical Laplace operators on the open unit disk resp. the Riemann sphere and, in particular, shows how they are interrelated with one another.</img></p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x2400021x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x2400021x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的中心主题是 "复数化单位圆 "补集 $\{(z,w) \in \widehat {{mathbb C}}^2 \colon z \cdot w = 1\}$ 的典型拉普拉斯算子的全形谱理论。首先,我们用超几何 ${}_2F_1$ 函数挑出了双盘上一组显著的全形特征函数,并证明它们提供了双盘上每个全形特征函数的谱分解。第二步,我们确定了这些特征函数的最大定义域,并证明这些最大定义域自然地决定了特征空间的精细结构。我们的主要结果给出了$\Omega $的典型拉普拉斯函数的特征空间的所有封闭莫比乌斯不变子空间的内在分类。这概括了赫尔加森和鲁丁之前的基础性工作,为开放单位盘和黎曼球上双曲拉普拉斯算子和球拉普拉斯算子的实解析特征值理论提供了一个统一的复解析框架,特别是显示了它们之间是如何相互关联的。
Spectral theory of the invariant Laplacian on the disk and the sphere – a complex analysis approach
The central theme of this paper is the holomorphic spectral theory of the canonical Laplace operator of the complement of the “complexified unit circle” $\{(z,w) \in \widehat {{\mathbb C}}^2 \colon z \cdot w = 1\}$. We start by singling out a distinguished set of holomorphic eigenfunctions on the bidisk in terms of hypergeometric ${}_2F_1$ functions and prove that they provide a spectral decomposition of every holomorphic eigenfunction on the bidisk. As a second step, we identify the maximal domains of definition of these eigenfunctions and show that these maximal domains naturally determine the fine structure of the eigenspaces. Our main result gives an intrinsic classification of all closed Möbius invariant subspaces of eigenspaces of the canonical Laplacian of $\Omega $. Generalizing foundational prior work of Helgason and Rudin, this provides a unifying complex analytic framework for the real-analytic eigenvalue theories of both the hyperbolic and spherical Laplace operators on the open unit disk resp. the Riemann sphere and, in particular, shows how they are interrelated with one another.