聚焦离子束在六方氮化硼中制造自旋缺陷的框架

Madeline Hennessey, Benjamin Whitefield, Angus Gale, Mehran Kianinia, John A. Scott, Igor Aharonovich, Milos Toth
{"title":"聚焦离子束在六方氮化硼中制造自旋缺陷的框架","authors":"Madeline Hennessey, Benjamin Whitefield, Angus Gale, Mehran Kianinia, John A. Scott, Igor Aharonovich, Milos Toth","doi":"10.1002/qute.202300459","DOIUrl":null,"url":null,"abstract":"Hexagonal boron nitride (hBN) is gaining interest as a wide bandgap van der Waals host of optically active spin defects for quantum technologies. Most studies of the spin‐photon interface in hBN focus on the negatively charged boron vacancy (V<jats:sub>B</jats:sub><jats:sup>−</jats:sup>) defect, which is typically fabricated by ion irradiation. However, the applicability and wide deployment of V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> defects is limited by V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> fabrication methods which lack robustness and reproducibility, particularly when applied to thin flakes (≲10 nm) of hBN. Here, two key factors are elucidated that underpin the formation and quenching of V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> centers by ion irradiation—density of defects generated in the hBN lattice and recoil‐implantation of foreign atoms into hBN. Critically, it is shown that the latter is extremely efficient at inhibiting the generation of optically‐active V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> centers. This is significant because foreign atoms such as carbon are commonplace on both the top and bottom surfaces of hBN during ion irradiation, in the form of hydrocarbon contaminants, polymer residues from hBN transfer methods, protective capping layers and substrates. Recoil implantation must be accounted for when selecting ion beam parameters such as ion mass, energy, fluence, incidence angle, and sputter/span yield, which are discussed in the context of a framework for V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> generation by high‐resolution focused ion beam (FIB) systems.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framework for Engineering of Spin Defects in Hexagonal Boron Nitride by Focused Ion Beams\",\"authors\":\"Madeline Hennessey, Benjamin Whitefield, Angus Gale, Mehran Kianinia, John A. Scott, Igor Aharonovich, Milos Toth\",\"doi\":\"10.1002/qute.202300459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hexagonal boron nitride (hBN) is gaining interest as a wide bandgap van der Waals host of optically active spin defects for quantum technologies. Most studies of the spin‐photon interface in hBN focus on the negatively charged boron vacancy (V<jats:sub>B</jats:sub><jats:sup>−</jats:sup>) defect, which is typically fabricated by ion irradiation. However, the applicability and wide deployment of V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> defects is limited by V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> fabrication methods which lack robustness and reproducibility, particularly when applied to thin flakes (≲10 nm) of hBN. Here, two key factors are elucidated that underpin the formation and quenching of V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> centers by ion irradiation—density of defects generated in the hBN lattice and recoil‐implantation of foreign atoms into hBN. Critically, it is shown that the latter is extremely efficient at inhibiting the generation of optically‐active V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> centers. This is significant because foreign atoms such as carbon are commonplace on both the top and bottom surfaces of hBN during ion irradiation, in the form of hydrocarbon contaminants, polymer residues from hBN transfer methods, protective capping layers and substrates. Recoil implantation must be accounted for when selecting ion beam parameters such as ion mass, energy, fluence, incidence angle, and sputter/span yield, which are discussed in the context of a framework for V<jats:sub>B</jats:sub><jats:sup>−</jats:sup> generation by high‐resolution focused ion beam (FIB) systems.\",\"PeriodicalId\":501028,\"journal\":{\"name\":\"Advanced Quantum Technologies\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Quantum Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/qute.202300459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

六方氮化硼(hBN)作为一种用于量子技术的宽带隙范德瓦耳斯光学活性自旋缺陷宿主,正受到越来越多的关注。对六方氮化硼中自旋光子界面的大多数研究都集中在带负电的硼空位(VB-)缺陷上,这种缺陷通常是通过离子辐照制造的。然而,VB-缺陷的适用性和广泛应用受到 VB-制造方法的限制,因为 VB-制造方法缺乏稳健性和可重复性,尤其是在应用于薄片(≲10 nm)氢化硼时。本文阐明了离子照射 VB 中心形成和淬灭的两个关键因素--氢化硼晶格中产生的缺陷密度和外来原子植入氢化硼的反冲。重要的是,研究表明后者在抑制光学活性 VB 中心的生成方面非常有效。这一点意义重大,因为在离子辐照过程中,碳等外来原子会以碳氢化合物污染物、氢化硼转移方法产生的聚合物残留物、保护盖层和基底的形式出现在氢化硼的上下表面。在选择离子束参数(如离子质量、能量、通量、入射角和溅射/跨度产率)时,必须考虑反冲植入问题,本文将在高分辨率聚焦离子束 (FIB) 系统产生 VB 的框架内讨论这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Framework for Engineering of Spin Defects in Hexagonal Boron Nitride by Focused Ion Beams

Framework for Engineering of Spin Defects in Hexagonal Boron Nitride by Focused Ion Beams
Hexagonal boron nitride (hBN) is gaining interest as a wide bandgap van der Waals host of optically active spin defects for quantum technologies. Most studies of the spin‐photon interface in hBN focus on the negatively charged boron vacancy (VB) defect, which is typically fabricated by ion irradiation. However, the applicability and wide deployment of VB defects is limited by VB fabrication methods which lack robustness and reproducibility, particularly when applied to thin flakes (≲10 nm) of hBN. Here, two key factors are elucidated that underpin the formation and quenching of VB centers by ion irradiation—density of defects generated in the hBN lattice and recoil‐implantation of foreign atoms into hBN. Critically, it is shown that the latter is extremely efficient at inhibiting the generation of optically‐active VB centers. This is significant because foreign atoms such as carbon are commonplace on both the top and bottom surfaces of hBN during ion irradiation, in the form of hydrocarbon contaminants, polymer residues from hBN transfer methods, protective capping layers and substrates. Recoil implantation must be accounted for when selecting ion beam parameters such as ion mass, energy, fluence, incidence angle, and sputter/span yield, which are discussed in the context of a framework for VB generation by high‐resolution focused ion beam (FIB) systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信