{"title":"计算机视觉中基于稀疏结果的最小求解器及其与动作矩阵的联系","authors":"Snehal Bhayani, Janne Heikkilä, Zuzana Kukelova","doi":"10.1007/s10851-024-01182-1","DOIUrl":null,"url":null,"abstract":"<p>Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of input data measurements. Minimal problems are usually formulated as complex systems of sparse polynomial equations. The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized in recent years. On the other hand, the alternative theory of sparse resultants based on the Newton polytopes has not been used so often for generating efficient solvers, primarily because the polytopes do not respect the constraints amongst the coefficients. In an attempt to tackle this challenge, here we propose a simple iterative scheme to test various subsets of the Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special form to further improve the solver efficiency via Schur complement computation. We show that for some camera geometry problems our resultant-based method leads to smaller and more stable solvers than the state-of-the-art Gröbner basis-based solvers, while being significantly smaller than the state-of-the-art resultant-based methods. The proposed method can be fully automated and incorporated into existing tools for the automatic generation of efficient polynomial solvers. It provides a competitive alternative to popular Gröbner basis-based methods for minimal problems in computer vision. Additionally, we study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and the proposed extra polynomial resultant-based method, are equivalent. Specifically, we consider a step-by-step comparison between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would lead to equivalent minimal solvers.\n</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"86 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Resultant-Based Minimal Solvers in Computer Vision and Their Connection with the Action Matrix\",\"authors\":\"Snehal Bhayani, Janne Heikkilä, Zuzana Kukelova\",\"doi\":\"10.1007/s10851-024-01182-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of input data measurements. Minimal problems are usually formulated as complex systems of sparse polynomial equations. The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized in recent years. On the other hand, the alternative theory of sparse resultants based on the Newton polytopes has not been used so often for generating efficient solvers, primarily because the polytopes do not respect the constraints amongst the coefficients. In an attempt to tackle this challenge, here we propose a simple iterative scheme to test various subsets of the Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special form to further improve the solver efficiency via Schur complement computation. We show that for some camera geometry problems our resultant-based method leads to smaller and more stable solvers than the state-of-the-art Gröbner basis-based solvers, while being significantly smaller than the state-of-the-art resultant-based methods. The proposed method can be fully automated and incorporated into existing tools for the automatic generation of efficient polynomial solvers. It provides a competitive alternative to popular Gröbner basis-based methods for minimal problems in computer vision. Additionally, we study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and the proposed extra polynomial resultant-based method, are equivalent. Specifically, we consider a step-by-step comparison between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would lead to equivalent minimal solvers.\\n</p>\",\"PeriodicalId\":16196,\"journal\":{\"name\":\"Journal of Mathematical Imaging and Vision\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Imaging and Vision\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10851-024-01182-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01182-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Sparse Resultant-Based Minimal Solvers in Computer Vision and Their Connection with the Action Matrix
Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of input data measurements. Minimal problems are usually formulated as complex systems of sparse polynomial equations. The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized in recent years. On the other hand, the alternative theory of sparse resultants based on the Newton polytopes has not been used so often for generating efficient solvers, primarily because the polytopes do not respect the constraints amongst the coefficients. In an attempt to tackle this challenge, here we propose a simple iterative scheme to test various subsets of the Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special form to further improve the solver efficiency via Schur complement computation. We show that for some camera geometry problems our resultant-based method leads to smaller and more stable solvers than the state-of-the-art Gröbner basis-based solvers, while being significantly smaller than the state-of-the-art resultant-based methods. The proposed method can be fully automated and incorporated into existing tools for the automatic generation of efficient polynomial solvers. It provides a competitive alternative to popular Gröbner basis-based methods for minimal problems in computer vision. Additionally, we study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and the proposed extra polynomial resultant-based method, are equivalent. Specifically, we consider a step-by-step comparison between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would lead to equivalent minimal solvers.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.