从特外群到其最大基本无性子群的同调限制的马格里斯同调

Pub Date : 2024-03-20 DOI:10.4310/hha.2024.v26.n1.a11
Ngô A. Tuân
{"title":"从特外群到其最大基本无性子群的同调限制的马格里斯同调","authors":"Ngô A. Tuân","doi":"10.4310/hha.2024.v26.n1.a11","DOIUrl":null,"url":null,"abstract":"Let $p$ be an odd prime and let $M_n$ be the extra-special $p$-group of order$p^{2n+1} (n \\geqslant 1)$ and exponent $p^2$. We completely compute the $\\mod p$ Margolis homology of the image ImRes $(A, M_n)$ for every maximal elementary abelian $p$-subgroup $A$ of $M_n$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Margolis homology of the cohomology restriction from an extra-special group to its maximal elementary abelian subgroups\",\"authors\":\"Ngô A. Tuân\",\"doi\":\"10.4310/hha.2024.v26.n1.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be an odd prime and let $M_n$ be the extra-special $p$-group of order$p^{2n+1} (n \\\\geqslant 1)$ and exponent $p^2$. We completely compute the $\\\\mod p$ Margolis homology of the image ImRes $(A, M_n)$ for every maximal elementary abelian $p$-subgroup $A$ of $M_n$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $p$ 是奇素数,让 $M_n$ 是阶为 $p^{2n+1} (n ≥geqslant 1)$ 且指数为 $p^2$ 的特殊 $p$ 群。我们将完全计算 $M_n$ 的每一个最大基本阿贝尔 $p$ 子群 $A$ 的图像 ImRes $(A, M_n)$ 的 $/mod p$ 马格里斯同源性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Margolis homology of the cohomology restriction from an extra-special group to its maximal elementary abelian subgroups
Let $p$ be an odd prime and let $M_n$ be the extra-special $p$-group of order$p^{2n+1} (n \geqslant 1)$ and exponent $p^2$. We completely compute the $\mod p$ Margolis homology of the image ImRes $(A, M_n)$ for every maximal elementary abelian $p$-subgroup $A$ of $M_n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信