{"title":"从特外群到其最大基本无性子群的同调限制的马格里斯同调","authors":"Ngô A. Tuân","doi":"10.4310/hha.2024.v26.n1.a11","DOIUrl":null,"url":null,"abstract":"Let $p$ be an odd prime and let $M_n$ be the extra-special $p$-group of order$p^{2n+1} (n \\geqslant 1)$ and exponent $p^2$. We completely compute the $\\mod p$ Margolis homology of the image ImRes $(A, M_n)$ for every maximal elementary abelian $p$-subgroup $A$ of $M_n$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Margolis homology of the cohomology restriction from an extra-special group to its maximal elementary abelian subgroups\",\"authors\":\"Ngô A. Tuân\",\"doi\":\"10.4310/hha.2024.v26.n1.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be an odd prime and let $M_n$ be the extra-special $p$-group of order$p^{2n+1} (n \\\\geqslant 1)$ and exponent $p^2$. We completely compute the $\\\\mod p$ Margolis homology of the image ImRes $(A, M_n)$ for every maximal elementary abelian $p$-subgroup $A$ of $M_n$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Margolis homology of the cohomology restriction from an extra-special group to its maximal elementary abelian subgroups
Let $p$ be an odd prime and let $M_n$ be the extra-special $p$-group of order$p^{2n+1} (n \geqslant 1)$ and exponent $p^2$. We completely compute the $\mod p$ Margolis homology of the image ImRes $(A, M_n)$ for every maximal elementary abelian $p$-subgroup $A$ of $M_n$.