论 2 联 6 维 CW 复合物的自同调等价群

Pub Date : 2024-03-20 DOI:10.4310/hha.2024.v26.n1.a10
Mahmoud Benkhalifa
{"title":"论 2 联 6 维 CW 复合物的自同调等价群","authors":"Mahmoud Benkhalifa","doi":"10.4310/hha.2024.v26.n1.a10","DOIUrl":null,"url":null,"abstract":"Let $X$ be a $2$-connected and $6$-dimensional CW‑complex such that $H_3 (X) \\otimes \\mathbb{Z}_2 = 0$. This paper aims to describe the group $\\mathcal{E}(X)$ of the self-homotopy equivalences of $X$ modulo its normal subgroup $\\mathcal{E}_\\ast (X)$ of the elements that induce the identity on the homology groups. Making use of the Whitehead exact sequence of $X$, denoted by WES($X$), we define the group $\\Gamma S(X)$ of $\\Gamma$-automorphisms of WES($X$) and we prove that $\\mathcal{E}(X)/\\mathcal{E}_\\ast (X) \\cong \\Gamma \\mathcal{S}(X)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the group of self-homotopy equivalences of a 2-connected and 6-dimensional CW-complex\",\"authors\":\"Mahmoud Benkhalifa\",\"doi\":\"10.4310/hha.2024.v26.n1.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a $2$-connected and $6$-dimensional CW‑complex such that $H_3 (X) \\\\otimes \\\\mathbb{Z}_2 = 0$. This paper aims to describe the group $\\\\mathcal{E}(X)$ of the self-homotopy equivalences of $X$ modulo its normal subgroup $\\\\mathcal{E}_\\\\ast (X)$ of the elements that induce the identity on the homology groups. Making use of the Whitehead exact sequence of $X$, denoted by WES($X$), we define the group $\\\\Gamma S(X)$ of $\\\\Gamma$-automorphisms of WES($X$) and we prove that $\\\\mathcal{E}(X)/\\\\mathcal{E}_\\\\ast (X) \\\\cong \\\\Gamma \\\\mathcal{S}(X)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $X$ 是一个 2$ 连接且 $6$ 维的 CW 复数,使得 $H_3 (X) \otimes \mathbb{Z}_2 = 0$。本文旨在描述 $X$ 的自同调等价群 $\mathcal{E}(X)$ modulo its normal subgroup $\mathcal{E}_\ast (X)$ of the elements that induce the identity on the homology groups.利用$X$的怀特海精确序列(用WES($X$)表示),我们定义了WES($X$)的$\Gamma$自同调的群:$\Gamma S(X)$,并证明了$\mathcal{E}(X)/\mathcal{E}_\ast (X) \cong \Gamma \mathcal{S}(X)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the group of self-homotopy equivalences of a 2-connected and 6-dimensional CW-complex
Let $X$ be a $2$-connected and $6$-dimensional CW‑complex such that $H_3 (X) \otimes \mathbb{Z}_2 = 0$. This paper aims to describe the group $\mathcal{E}(X)$ of the self-homotopy equivalences of $X$ modulo its normal subgroup $\mathcal{E}_\ast (X)$ of the elements that induce the identity on the homology groups. Making use of the Whitehead exact sequence of $X$, denoted by WES($X$), we define the group $\Gamma S(X)$ of $\Gamma$-automorphisms of WES($X$) and we prove that $\mathcal{E}(X)/\mathcal{E}_\ast (X) \cong \Gamma \mathcal{S}(X)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信