论孤立自旋系统动力学量子统计描述的因式分解法

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. A. Samokhin, A. V. Zyl, N. L. Zamarashkin
{"title":"论孤立自旋系统动力学量子统计描述的因式分解法","authors":"A. A. Samokhin,&nbsp;A. V. Zyl,&nbsp;N. L. Zamarashkin","doi":"10.1134/S0040577924030061","DOIUrl":null,"url":null,"abstract":"<p> We study the applicability of the formula that factors the trace of the diagonal part of spin operator products in the case of a relatively small number of particles of an isolated spin system. The validity of this formula for a large number of particles follows from the basic principles of quantum statistical mechanics. The spin system under consideration includes dipole–dipole interaction and the Zeeman interaction with an external magnetic field. We establish that the accuracy of this formula monotonically increases as the magnetic field increases. At the same time, the dependence on the number of particles in the range <span>\\(2\\div10\\)</span> for various configurations turns out to be sharply nonmonotone. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the factorization method for the quantum statistical description of dynamics of an isolated spin system\",\"authors\":\"A. A. Samokhin,&nbsp;A. V. Zyl,&nbsp;N. L. Zamarashkin\",\"doi\":\"10.1134/S0040577924030061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the applicability of the formula that factors the trace of the diagonal part of spin operator products in the case of a relatively small number of particles of an isolated spin system. The validity of this formula for a large number of particles follows from the basic principles of quantum statistical mechanics. The spin system under consideration includes dipole–dipole interaction and the Zeeman interaction with an external magnetic field. We establish that the accuracy of this formula monotonically increases as the magnetic field increases. At the same time, the dependence on the number of particles in the range <span>\\\\(2\\\\div10\\\\)</span> for various configurations turns out to be sharply nonmonotone. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924030061\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924030061","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了自旋算子乘积对角线部分的迹因子公式在孤立自旋系统粒子数量相对较少的情况下的适用性。根据量子统计力学的基本原理,该公式对大量粒子也有效。所考虑的自旋系统包括偶极-偶极相互作用以及与外部磁场的泽曼相互作用。我们发现,随着磁场的增大,该公式的精确度单调递增。同时,对于不同的构型,粒子数量在 \(2\div10\)范围内的依赖性是急剧非单调的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the factorization method for the quantum statistical  description of dynamics of an isolated spin system

On the factorization method for the quantum statistical description of dynamics of an isolated spin system

We study the applicability of the formula that factors the trace of the diagonal part of spin operator products in the case of a relatively small number of particles of an isolated spin system. The validity of this formula for a large number of particles follows from the basic principles of quantum statistical mechanics. The spin system under consideration includes dipole–dipole interaction and the Zeeman interaction with an external magnetic field. We establish that the accuracy of this formula monotonically increases as the magnetic field increases. At the same time, the dependence on the number of particles in the range \(2\div10\) for various configurations turns out to be sharply nonmonotone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信