{"title":"紧凑李群和复杂还原群","authors":"John Jones, Dmitriy Rumynin, Adam Thomas","doi":"10.4310/hha.2024.v26.n1.a12","DOIUrl":null,"url":null,"abstract":"We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of topological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Lie groups and complex reductive groups\",\"authors\":\"John Jones, Dmitriy Rumynin, Adam Thomas\",\"doi\":\"10.4310/hha.2024.v26.n1.a12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of topological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of topological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.