紧凑李群和复杂还原群

Pub Date : 2024-03-20 DOI:10.4310/hha.2024.v26.n1.a12
John Jones, Dmitriy Rumynin, Adam Thomas
{"title":"紧凑李群和复杂还原群","authors":"John Jones, Dmitriy Rumynin, Adam Thomas","doi":"10.4310/hha.2024.v26.n1.a12","DOIUrl":null,"url":null,"abstract":"We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of topological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Lie groups and complex reductive groups\",\"authors\":\"John Jones, Dmitriy Rumynin, Adam Thomas\",\"doi\":\"10.4310/hha.2024.v26.n1.a12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of topological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,紧凑李群和复杂还原群(不一定连通)的范畴是同调等价的拓扑范畴。换句话说,拓扑空间同调范畴中丰富的相应范畴是等价的。这也可以解释为无穷范畴的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Compact Lie groups and complex reductive groups
We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of topological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信