{"title":"普通混凝土 (NC) 与超高性能混凝土 (UHPC) 之间的界面剪切破坏行为","authors":"Boshan Zhang, Jiangjiang Yu, Weizhen Chen, Jianbo Chen, Heng Li, Jialun Niu","doi":"10.1186/s40069-023-00657-6","DOIUrl":null,"url":null,"abstract":"<p>Ultra-high performance concrete (UHPC) with excellent mechanical properties and durability is a promising material for reinforcement of existing normal concrete (NC) structures. In this paper, the shear failure behavior of the NC–UHPC interface was studied by the slant shear test and the SEM (scanning electron microscope) visualization test, considering influence of the substrate strength and the interface roughed treatment. As the NC substrate and the UHPC overlay are tightly combined at the interface transition zone (ITZ), the interface exhibits good slant shear performance, and the measured interfacial shear strength could reach 19.4 MPa with C40 substrate and 21.8 MPa with C50 substrate. In addition, the microstructure and composition of the ITZ, the possible interfacial failure modes, and the load-carrying mechanism of the interface under compression–shear force are revealed. The high interface roughness and the substrate strength have positive influence on the shear strength, and greatly affect the prone failure mode and the load-slip characteristic.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface Shear Failure Behavior Between Normal Concrete (NC) and Ultra-High Performance Concrete (UHPC)\",\"authors\":\"Boshan Zhang, Jiangjiang Yu, Weizhen Chen, Jianbo Chen, Heng Li, Jialun Niu\",\"doi\":\"10.1186/s40069-023-00657-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultra-high performance concrete (UHPC) with excellent mechanical properties and durability is a promising material for reinforcement of existing normal concrete (NC) structures. In this paper, the shear failure behavior of the NC–UHPC interface was studied by the slant shear test and the SEM (scanning electron microscope) visualization test, considering influence of the substrate strength and the interface roughed treatment. As the NC substrate and the UHPC overlay are tightly combined at the interface transition zone (ITZ), the interface exhibits good slant shear performance, and the measured interfacial shear strength could reach 19.4 MPa with C40 substrate and 21.8 MPa with C50 substrate. In addition, the microstructure and composition of the ITZ, the possible interfacial failure modes, and the load-carrying mechanism of the interface under compression–shear force are revealed. The high interface roughness and the substrate strength have positive influence on the shear strength, and greatly affect the prone failure mode and the load-slip characteristic.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00657-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00657-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Interface Shear Failure Behavior Between Normal Concrete (NC) and Ultra-High Performance Concrete (UHPC)
Ultra-high performance concrete (UHPC) with excellent mechanical properties and durability is a promising material for reinforcement of existing normal concrete (NC) structures. In this paper, the shear failure behavior of the NC–UHPC interface was studied by the slant shear test and the SEM (scanning electron microscope) visualization test, considering influence of the substrate strength and the interface roughed treatment. As the NC substrate and the UHPC overlay are tightly combined at the interface transition zone (ITZ), the interface exhibits good slant shear performance, and the measured interfacial shear strength could reach 19.4 MPa with C40 substrate and 21.8 MPa with C50 substrate. In addition, the microstructure and composition of the ITZ, the possible interfacial failure modes, and the load-carrying mechanism of the interface under compression–shear force are revealed. The high interface roughness and the substrate strength have positive influence on the shear strength, and greatly affect the prone failure mode and the load-slip characteristic.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.