{"title":"与非局部 mKdV 方程相关的非局部有限维可积分系统","authors":"Xue Wang, Dianlou Du, Hui Wang","doi":"10.1134/S0040577924030024","DOIUrl":null,"url":null,"abstract":"<p> We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie–Poisson structure. By a coordinate transformation, the nonlocal Lie–Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrödinger (NNLS) equation. According to the Hamilton–Jacobi theory, we obtain the action–angle-type coordinates and the inversion problems related to Lie–Poisson Hamiltonian systems. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonlocal finite-dimensional integrable system related to the nonlocal mKdV equation\",\"authors\":\"Xue Wang, Dianlou Du, Hui Wang\",\"doi\":\"10.1134/S0040577924030024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie–Poisson structure. By a coordinate transformation, the nonlocal Lie–Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrödinger (NNLS) equation. According to the Hamilton–Jacobi theory, we obtain the action–angle-type coordinates and the inversion problems related to Lie–Poisson Hamiltonian systems. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924030024\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924030024","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
A nonlocal finite-dimensional integrable system related to the nonlocal mKdV equation
We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie–Poisson structure. By a coordinate transformation, the nonlocal Lie–Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrödinger (NNLS) equation. According to the Hamilton–Jacobi theory, we obtain the action–angle-type coordinates and the inversion problems related to Lie–Poisson Hamiltonian systems.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.