{"title":"惠瑟姆调制理论和广田失焦方程周期解下的溃坝问题","authors":"Xinyue Li, Qian Bai, Qiulan Zhao","doi":"10.1134/S0040577924030036","DOIUrl":null,"url":null,"abstract":"<p> We explore the Whitham modulation theory and one of its physical applications, the dam-breaking problem for the defocusing Hirota equation that describes the propagation of ultrashort pulses in optical fibers with third-order dispersion and self-steepening higher-order effects. By using the finite-gap integration approach, we deduce periodic solutions of the equation and discuss the degeneration of genus-one periodic solution to a soliton solution. Furthermore, the corresponding Whitham equations based on Riemann invariants are obtained, which can be used to modulate the periodic solutions with step-like initial data. These Whitham equations with the weak dispersion limit are quasilinear hyperbolic equations and elucidate the averaged dynamics of the fast oscillations referred to as dispersive shocks, which occur in the solution of the defocusing Hirota equation. We analyze the case where both characteristic velocities in genus-zero Whitham equations are equal to zero and the values of two Riemann invariants are taken as the critical case. Then by varying these two values as step-like initial data, we study the rarefaction wave and dispersive shock wave solutions of the Whitham equations. Under certain step-like initial data, the point where two genus-one dispersive shock waves begin to collide at a certain time, that is, the point where the genus-two dispersive shock wave appears, is investigated. We also discuss the dam-breaking problem as an important physical application of the Whitham modulation theory. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation\",\"authors\":\"Xinyue Li, Qian Bai, Qiulan Zhao\",\"doi\":\"10.1134/S0040577924030036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We explore the Whitham modulation theory and one of its physical applications, the dam-breaking problem for the defocusing Hirota equation that describes the propagation of ultrashort pulses in optical fibers with third-order dispersion and self-steepening higher-order effects. By using the finite-gap integration approach, we deduce periodic solutions of the equation and discuss the degeneration of genus-one periodic solution to a soliton solution. Furthermore, the corresponding Whitham equations based on Riemann invariants are obtained, which can be used to modulate the periodic solutions with step-like initial data. These Whitham equations with the weak dispersion limit are quasilinear hyperbolic equations and elucidate the averaged dynamics of the fast oscillations referred to as dispersive shocks, which occur in the solution of the defocusing Hirota equation. We analyze the case where both characteristic velocities in genus-zero Whitham equations are equal to zero and the values of two Riemann invariants are taken as the critical case. Then by varying these two values as step-like initial data, we study the rarefaction wave and dispersive shock wave solutions of the Whitham equations. Under certain step-like initial data, the point where two genus-one dispersive shock waves begin to collide at a certain time, that is, the point where the genus-two dispersive shock wave appears, is investigated. We also discuss the dam-breaking problem as an important physical application of the Whitham modulation theory. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924030036\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924030036","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation
We explore the Whitham modulation theory and one of its physical applications, the dam-breaking problem for the defocusing Hirota equation that describes the propagation of ultrashort pulses in optical fibers with third-order dispersion and self-steepening higher-order effects. By using the finite-gap integration approach, we deduce periodic solutions of the equation and discuss the degeneration of genus-one periodic solution to a soliton solution. Furthermore, the corresponding Whitham equations based on Riemann invariants are obtained, which can be used to modulate the periodic solutions with step-like initial data. These Whitham equations with the weak dispersion limit are quasilinear hyperbolic equations and elucidate the averaged dynamics of the fast oscillations referred to as dispersive shocks, which occur in the solution of the defocusing Hirota equation. We analyze the case where both characteristic velocities in genus-zero Whitham equations are equal to zero and the values of two Riemann invariants are taken as the critical case. Then by varying these two values as step-like initial data, we study the rarefaction wave and dispersive shock wave solutions of the Whitham equations. Under certain step-like initial data, the point where two genus-one dispersive shock waves begin to collide at a certain time, that is, the point where the genus-two dispersive shock wave appears, is investigated. We also discuss the dam-breaking problem as an important physical application of the Whitham modulation theory.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.