单参数离散时间卡洛吉罗-莫泽系统

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
U. Jairuk, S. Yoo-Kong
{"title":"单参数离散时间卡洛吉罗-莫泽系统","authors":"U. Jairuk,&nbsp;S. Yoo-Kong","doi":"10.1134/S0040577924030012","DOIUrl":null,"url":null,"abstract":"<p> We present a new type of integrable one-dimensional many-body systems called a one-parameter Calogero–Moser system. At the discrete level, the Lax pairs with a parameter are introduced and the discrete-time equations of motion are obtained as together with the corresponding discrete-time Lagrangian. The integrability property of this new system can be expressed in terms of the discrete Lagrangian closure relation by using a connection with the temporal Lax matrices of the discrete-time Ruijsenaars–Schneider system, an exact solution, and the existence of a classical <span>\\(r\\)</span>-matrix. As the parameter tends to zero, the standard Calogero–Moser system is recovered in both discrete-time and continuous-time forms. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"218 3","pages":"357 - 369"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-parameter discrete-time Calogero–Moser system\",\"authors\":\"U. Jairuk,&nbsp;S. Yoo-Kong\",\"doi\":\"10.1134/S0040577924030012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We present a new type of integrable one-dimensional many-body systems called a one-parameter Calogero–Moser system. At the discrete level, the Lax pairs with a parameter are introduced and the discrete-time equations of motion are obtained as together with the corresponding discrete-time Lagrangian. The integrability property of this new system can be expressed in terms of the discrete Lagrangian closure relation by using a connection with the temporal Lax matrices of the discrete-time Ruijsenaars–Schneider system, an exact solution, and the existence of a classical <span>\\\\(r\\\\)</span>-matrix. As the parameter tends to zero, the standard Calogero–Moser system is recovered in both discrete-time and continuous-time forms. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"218 3\",\"pages\":\"357 - 369\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924030012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924030012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出了一种新的可积分一维多体系统,称为一参数卡洛吉罗-莫泽系统。在离散层面上,我们引入了带参数的拉克斯对,并得到了离散时间运动方程和相应的离散时间拉格朗日。通过与离散时间 Ruijsenaars-Schneider 系统的时间 Lax 矩阵、精确解以及经典 \(r\)- 矩阵的存在的联系,可以用离散拉格朗日闭合关系来表达这一新系统的可积分性。当参数趋近于零时,标准的卡洛吉罗-莫泽系统就会以离散时间和连续时间两种形式恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-parameter discrete-time Calogero–Moser system

One-parameter discrete-time Calogero–Moser system

We present a new type of integrable one-dimensional many-body systems called a one-parameter Calogero–Moser system. At the discrete level, the Lax pairs with a parameter are introduced and the discrete-time equations of motion are obtained as together with the corresponding discrete-time Lagrangian. The integrability property of this new system can be expressed in terms of the discrete Lagrangian closure relation by using a connection with the temporal Lax matrices of the discrete-time Ruijsenaars–Schneider system, an exact solution, and the existence of a classical \(r\)-matrix. As the parameter tends to zero, the standard Calogero–Moser system is recovered in both discrete-time and continuous-time forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信