线性浅层神经网络加速发射机色散眼闭合四次方(TDECQ)评估

IF 7.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Junjiang Xiang, Zejun Chen, Yijun Cheng, Hailin Yang, Xuancheng Huo, Meng Xiang, Gai Zhou, Yuwen Qin, Songnian Fu
{"title":"线性浅层神经网络加速发射机色散眼闭合四次方(TDECQ)评估","authors":"Junjiang Xiang, Zejun Chen, Yijun Cheng, Hailin Yang, Xuancheng Huo, Meng Xiang, Gai Zhou, Yuwen Qin, Songnian Fu","doi":"10.1007/s11432-023-3947-8","DOIUrl":null,"url":null,"abstract":"<p>We have demonstrated a data-driven TDECQ assessment scheme based on L-SNN. In comparison with existing DL-based schemes, the proposed L-SNN can achieve the lowest computation complexity with only 210 multiplications. The MAE of the L-SNN scheme for 25 and 50 Gbaud PAM-4 optical signals is experimentally verified to be 0.13 and 0.15 dB, respectively, over the TDECQ range of 1.5–4.0 dB, which has reached the accuracy threshold of 0.25 dB recommended by the IEEE standard.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"2015 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear shallow neural network to accelerate transmitter dispersion eye closure quaternary (TDECQ) assessment\",\"authors\":\"Junjiang Xiang, Zejun Chen, Yijun Cheng, Hailin Yang, Xuancheng Huo, Meng Xiang, Gai Zhou, Yuwen Qin, Songnian Fu\",\"doi\":\"10.1007/s11432-023-3947-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We have demonstrated a data-driven TDECQ assessment scheme based on L-SNN. In comparison with existing DL-based schemes, the proposed L-SNN can achieve the lowest computation complexity with only 210 multiplications. The MAE of the L-SNN scheme for 25 and 50 Gbaud PAM-4 optical signals is experimentally verified to be 0.13 and 0.15 dB, respectively, over the TDECQ range of 1.5–4.0 dB, which has reached the accuracy threshold of 0.25 dB recommended by the IEEE standard.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-3947-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3947-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一种基于 L-SNN 的数据驱动 TDECQ 评估方案。与现有的基于 DL 的方案相比,所提出的 L-SNN 计算复杂度最低,只有 210 次乘法运算。经实验验证,在 1.5-4.0 dB 的 TDECQ 范围内,L-SNN 方案对 25 和 50 Gbaud PAM-4 光信号的 MAE 分别为 0.13 和 0.15 dB,达到了 IEEE 标准推荐的 0.25 dB 精度阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear shallow neural network to accelerate transmitter dispersion eye closure quaternary (TDECQ) assessment

We have demonstrated a data-driven TDECQ assessment scheme based on L-SNN. In comparison with existing DL-based schemes, the proposed L-SNN can achieve the lowest computation complexity with only 210 multiplications. The MAE of the L-SNN scheme for 25 and 50 Gbaud PAM-4 optical signals is experimentally verified to be 0.13 and 0.15 dB, respectively, over the TDECQ range of 1.5–4.0 dB, which has reached the accuracy threshold of 0.25 dB recommended by the IEEE standard.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信