关于 P3$\mathbb {P}^3$ 上的秩 3 瞬子束

Pub Date : 2024-03-22 DOI:10.1002/mana.202200332
A. V. Andrade, D. R. Santiago, D. D. Silva, L. C. S. Sobral
{"title":"关于 P3$\\mathbb {P}^3$ 上的秩 3 瞬子束","authors":"A. V. Andrade,&nbsp;D. R. Santiago,&nbsp;D. D. Silva,&nbsp;L. C. S. Sobral","doi":"10.1002/mana.202200332","DOIUrl":null,"url":null,"abstract":"<p>We investigate rank 3 instanton vector bundles on <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {P}^3$</annotation>\n </semantics></math> of charge <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> and its correspondence with rational curves of degree <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n+3$</annotation>\n </semantics></math>. For <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>, we present a correspondence between stable rank 3 instanton bundles and stable rank 2 reflexive linear sheaves of Chern classes <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>c</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>c</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>c</mi>\n <mn>3</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(c_1,c_2,c_3)=(-1,3,3)$</annotation>\n </semantics></math> and we use this correspondence to compute the dimension of the family of stable rank 3 instanton bundles of charge 2. Finally, we use the results above to prove that the moduli space of rank 3 instanton bundles on <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {P}^3$</annotation>\n </semantics></math> of charge 2 coincides with the moduli space of rank 3 stable locally free sheaves on <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {P}^3$</annotation>\n </semantics></math> of Chern classes <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>c</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>c</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>c</mi>\n <mn>3</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(c_1,c_2,c_3)=(0,2,0)$</annotation>\n </semantics></math>. This moduli space is irreducible, has dimension 16 and its generic point corresponds to a generalized't Hooft instanton bundle.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On rank 3 instanton bundles on \\n \\n \\n P\\n 3\\n \\n $\\\\mathbb {P}^3$\",\"authors\":\"A. V. Andrade,&nbsp;D. R. Santiago,&nbsp;D. D. Silva,&nbsp;L. C. S. Sobral\",\"doi\":\"10.1002/mana.202200332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate rank 3 instanton vector bundles on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^3$</annotation>\\n </semantics></math> of charge <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> and its correspondence with rational curves of degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n+3$</annotation>\\n </semantics></math>. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n=2$</annotation>\\n </semantics></math>, we present a correspondence between stable rank 3 instanton bundles and stable rank 2 reflexive linear sheaves of Chern classes <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>c</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>c</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>c</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(c_1,c_2,c_3)=(-1,3,3)$</annotation>\\n </semantics></math> and we use this correspondence to compute the dimension of the family of stable rank 3 instanton bundles of charge 2. Finally, we use the results above to prove that the moduli space of rank 3 instanton bundles on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^3$</annotation>\\n </semantics></math> of charge 2 coincides with the moduli space of rank 3 stable locally free sheaves on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^3$</annotation>\\n </semantics></math> of Chern classes <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>c</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>c</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>c</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(c_1,c_2,c_3)=(0,2,0)$</annotation>\\n </semantics></math>. This moduli space is irreducible, has dimension 16 and its generic point corresponds to a generalized't Hooft instanton bundle.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了电荷上的秩3瞬子向量束及其与有理曲线的对应关系。对于 ,我们提出了稳定的秩 3 瞬子束与稳定的秩 2 车恩类反折线性剪子之间的对应关系,并利用这一对应关系计算了电荷为 2 的稳定的秩 3 瞬子束家族的维数。最后,我们利用上述结果证明电荷 2 上的稳定秩 3 瞬子束的模空间与 Chern 类上的稳定秩 3 局部自由剪切的模空间重合。这个模空间是不可还原的,维数为 16,其泛函点对应于广义的't Hooft 瞬子束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On rank 3 instanton bundles on P 3 $\mathbb {P}^3$

We investigate rank 3 instanton vector bundles on P 3 $\mathbb {P}^3$ of charge n $n$ and its correspondence with rational curves of degree n + 3 $n+3$ . For n = 2 $n=2$ , we present a correspondence between stable rank 3 instanton bundles and stable rank 2 reflexive linear sheaves of Chern classes ( c 1 , c 2 , c 3 ) = ( 1 , 3 , 3 ) $(c_1,c_2,c_3)=(-1,3,3)$ and we use this correspondence to compute the dimension of the family of stable rank 3 instanton bundles of charge 2. Finally, we use the results above to prove that the moduli space of rank 3 instanton bundles on P 3 $\mathbb {P}^3$ of charge 2 coincides with the moduli space of rank 3 stable locally free sheaves on P 3 $\mathbb {P}^3$ of Chern classes ( c 1 , c 2 , c 3 ) = ( 0 , 2 , 0 ) $(c_1,c_2,c_3)=(0,2,0)$ . This moduli space is irreducible, has dimension 16 and its generic point corresponds to a generalized't Hooft instanton bundle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信