ENRICO DALL’ACQUA, RICCARDO LONGONI, ANDREA PALLAVICINI
{"title":"粗略-斯特伦局部波动模型","authors":"ENRICO DALL’ACQUA, RICCARDO LONGONI, ANDREA PALLAVICINI","doi":"10.1142/s0219024923500218","DOIUrl":null,"url":null,"abstract":"<p>In industrial applications it is quite common to use stochastic-volatility models driven by semi-martingale Markov volatility processes. However, in order to fit exactly market volatilities, these models are usually extended by adding a local-volatility term. Here, we consider the case of singular Volterra processes, and we extend them by adding a local-volatility term to their Markov lift by preserving the stylized results implied by these models on plain-vanilla options. In particular, we focus on the rough-Heston model, and we analyze the small-time asymptotics of its implied local-volatility function in order to provide a proper extrapolation scheme to be used in calibration.</p>","PeriodicalId":47022,"journal":{"name":"International Journal of Theoretical and Applied Finance","volume":"25 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROUGH-HESTON LOCAL-VOLATILITY MODEL\",\"authors\":\"ENRICO DALL’ACQUA, RICCARDO LONGONI, ANDREA PALLAVICINI\",\"doi\":\"10.1142/s0219024923500218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In industrial applications it is quite common to use stochastic-volatility models driven by semi-martingale Markov volatility processes. However, in order to fit exactly market volatilities, these models are usually extended by adding a local-volatility term. Here, we consider the case of singular Volterra processes, and we extend them by adding a local-volatility term to their Markov lift by preserving the stylized results implied by these models on plain-vanilla options. In particular, we focus on the rough-Heston model, and we analyze the small-time asymptotics of its implied local-volatility function in order to provide a proper extrapolation scheme to be used in calibration.</p>\",\"PeriodicalId\":47022,\"journal\":{\"name\":\"International Journal of Theoretical and Applied Finance\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical and Applied Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219024923500218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical and Applied Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219024923500218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
In industrial applications it is quite common to use stochastic-volatility models driven by semi-martingale Markov volatility processes. However, in order to fit exactly market volatilities, these models are usually extended by adding a local-volatility term. Here, we consider the case of singular Volterra processes, and we extend them by adding a local-volatility term to their Markov lift by preserving the stylized results implied by these models on plain-vanilla options. In particular, we focus on the rough-Heston model, and we analyze the small-time asymptotics of its implied local-volatility function in order to provide a proper extrapolation scheme to be used in calibration.
期刊介绍:
The shift of the financial market towards the general use of advanced mathematical methods has led to the introduction of state-of-the-art quantitative tools into the world of finance. The International Journal of Theoretical and Applied Finance (IJTAF) brings together international experts involved in the mathematical modelling of financial instruments as well as the application of these models to global financial markets. The development of complex financial products has led to new challenges to the regulatory bodies. Financial instruments that have been designed to serve the needs of the mature capitals market need to be adapted for application in the emerging markets.