稳定器状态的极端性

Kaifeng Bu
{"title":"稳定器状态的极端性","authors":"Kaifeng Bu","doi":"arxiv-2403.13632","DOIUrl":null,"url":null,"abstract":"We investigate the extremality of stabilizer states to reveal their\nexceptional role in the space of all $n$-qubit/qudit states. We establish\nuncertainty principles for the characteristic function and the Wigner function\nof states, respectively. We find that only stabilizer states achieve saturation\nin these principles. Furthermore, we prove a general theorem that stabilizer\nstates are extremal for convex information measures invariant under local\nunitaries. We explore this extremality in the context of various quantum\ninformation and correlation measures, including entanglement entropy,\nconditional entropy and other entanglement measures. Additionally, leveraging\nthe recent discovery that stabilizer states are the limit states under quantum\nconvolution, we establish the monotonicity of the entanglement entropy and\nconditional entropy under quantum convolution. These results highlight the\nremarkable information-theoretic properties of stabilizer states. Their\nextremality provides valuable insights into their ability to capture\ninformation content and correlations, paving the way for further exploration of\ntheir potential in quantum information processing.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremality of stabilizer states\",\"authors\":\"Kaifeng Bu\",\"doi\":\"arxiv-2403.13632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the extremality of stabilizer states to reveal their\\nexceptional role in the space of all $n$-qubit/qudit states. We establish\\nuncertainty principles for the characteristic function and the Wigner function\\nof states, respectively. We find that only stabilizer states achieve saturation\\nin these principles. Furthermore, we prove a general theorem that stabilizer\\nstates are extremal for convex information measures invariant under local\\nunitaries. We explore this extremality in the context of various quantum\\ninformation and correlation measures, including entanglement entropy,\\nconditional entropy and other entanglement measures. Additionally, leveraging\\nthe recent discovery that stabilizer states are the limit states under quantum\\nconvolution, we establish the monotonicity of the entanglement entropy and\\nconditional entropy under quantum convolution. These results highlight the\\nremarkable information-theoretic properties of stabilizer states. Their\\nextremality provides valuable insights into their ability to capture\\ninformation content and correlations, paving the way for further exploration of\\ntheir potential in quantum information processing.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.13632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了稳定器态的极端性,揭示了它在所有 $n$- 量子比特/量子态空间中的特殊作用。我们分别建立了状态的特征函数和维格纳函数的不确定性原理。我们发现,在这些原理中,只有稳定器态才能达到饱和。此外,我们还证明了一个一般性定理,即对于在局部单元下不变的凸信息量,稳定器态是极值态。我们结合各种量纲和相关量纲,包括纠缠熵、条件熵和其他纠缠量纲,探讨了这种极值性。此外,利用最近发现的稳定态是量子卷积下的极限态,我们建立了量子卷积下的纠缠熵和条件熵的单调性。这些结果凸显了稳定器态具有显著的信息论特性。它们的极端性为它们捕捉信息内容和相关性的能力提供了宝贵的见解,为进一步探索它们在量子信息处理中的潜力铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremality of stabilizer states
We investigate the extremality of stabilizer states to reveal their exceptional role in the space of all $n$-qubit/qudit states. We establish uncertainty principles for the characteristic function and the Wigner function of states, respectively. We find that only stabilizer states achieve saturation in these principles. Furthermore, we prove a general theorem that stabilizer states are extremal for convex information measures invariant under local unitaries. We explore this extremality in the context of various quantum information and correlation measures, including entanglement entropy, conditional entropy and other entanglement measures. Additionally, leveraging the recent discovery that stabilizer states are the limit states under quantum convolution, we establish the monotonicity of the entanglement entropy and conditional entropy under quantum convolution. These results highlight the remarkable information-theoretic properties of stabilizer states. Their extremality provides valuable insights into their ability to capture information content and correlations, paving the way for further exploration of their potential in quantum information processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信