解析半群族的统一边界和平面前沿的李亚普诺夫线性稳定性

Pub Date : 2024-03-22 DOI:10.1002/mana.202300273
Yuri Latushkin, Alin Pogan
{"title":"解析半群族的统一边界和平面前沿的李亚普诺夫线性稳定性","authors":"Yuri Latushkin,&nbsp;Alin Pogan","doi":"10.1002/mana.202300273","DOIUrl":null,"url":null,"abstract":"<p>We study families of analytic semigroups, acting on a Banach space, and depending on a parameter, and give sufficient conditions for existence of uniform with respect to the parameter norm bounds using spectral properties of the respective semigroup generators. In particular, we use estimates of the resolvent operators of the generators along vertical segments to estimate the growth/decay rate of the norm for the family of analytic semigroups. These results are applied to prove the Lyapunov linear stability of planar traveling waves of systems of reaction–diffusion equations, and the bidomain equation, important in electrophysiology.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform bounds of families of analytic semigroups and Lyapunov Linear Stability of planar fronts\",\"authors\":\"Yuri Latushkin,&nbsp;Alin Pogan\",\"doi\":\"10.1002/mana.202300273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study families of analytic semigroups, acting on a Banach space, and depending on a parameter, and give sufficient conditions for existence of uniform with respect to the parameter norm bounds using spectral properties of the respective semigroup generators. In particular, we use estimates of the resolvent operators of the generators along vertical segments to estimate the growth/decay rate of the norm for the family of analytic semigroups. These results are applied to prove the Lyapunov linear stability of planar traveling waves of systems of reaction–diffusion equations, and the bidomain equation, important in electrophysiology.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了作用于巴拿赫空间并取决于参数的解析半群族,并利用各半群生成器的光谱特性给出了参数规范约束均匀存在的充分条件。特别是,我们利用沿垂直线段的生成器解析算子的估计值来估计解析半群族的规范增长/衰减率。这些结果被应用于证明反应扩散方程系统平面行波的李亚普诺夫线性稳定性,以及电生理学中重要的双域方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Uniform bounds of families of analytic semigroups and Lyapunov Linear Stability of planar fronts

We study families of analytic semigroups, acting on a Banach space, and depending on a parameter, and give sufficient conditions for existence of uniform with respect to the parameter norm bounds using spectral properties of the respective semigroup generators. In particular, we use estimates of the resolvent operators of the generators along vertical segments to estimate the growth/decay rate of the norm for the family of analytic semigroups. These results are applied to prove the Lyapunov linear stability of planar traveling waves of systems of reaction–diffusion equations, and the bidomain equation, important in electrophysiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信