一般李型旗底流形的等变 K$K$ 理论

Pub Date : 2024-03-22 DOI:10.1002/mana.202300423
Bidhan Paul, Vikraman Uma
{"title":"一般李型旗底流形的等变 K$K$ 理论","authors":"Bidhan Paul,&nbsp;Vikraman Uma","doi":"10.1002/mana.202300423","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to describe the equivariant and ordinary Grothendieck ring and the equivariant and ordinary topological <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-ring of flag Bott manifolds of the general Lie type. This will generalize the results on the equivariant and ordinary cohomology of flag Bott manifolds of the general Lie type due to Kaji, Kuroki, Lee, and Suh.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant \\n \\n K\\n $K$\\n -theory of flag Bott manifolds of general Lie type\",\"authors\":\"Bidhan Paul,&nbsp;Vikraman Uma\",\"doi\":\"10.1002/mana.202300423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to describe the equivariant and ordinary Grothendieck ring and the equivariant and ordinary topological <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-ring of flag Bott manifolds of the general Lie type. This will generalize the results on the equivariant and ordinary cohomology of flag Bott manifolds of the general Lie type due to Kaji, Kuroki, Lee, and Suh.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在描述一般Lie型旗状Bott流形的等变和普通格罗内狄克环以及等变和普通拓扑-环。这将推广梶(Kaji)、黑木(Kuroki)、李(Lee)和苏(Suh)关于一般李型旗状 Bott 流形的等变和普通同调的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equivariant K $K$ -theory of flag Bott manifolds of general Lie type

The aim of this paper is to describe the equivariant and ordinary Grothendieck ring and the equivariant and ordinary topological K $K$ -ring of flag Bott manifolds of the general Lie type. This will generalize the results on the equivariant and ordinary cohomology of flag Bott manifolds of the general Lie type due to Kaji, Kuroki, Lee, and Suh.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信