有限群可解共轭类图的属和交盖

IF 0.5 4区 数学 Q3 MATHEMATICS
Parthajit Bhowal, Peter J. Cameron, Rajat Kanti Nath, Benjamin Sambale
{"title":"有限群可解共轭类图的属和交盖","authors":"Parthajit Bhowal,&nbsp;Peter J. Cameron,&nbsp;Rajat Kanti Nath,&nbsp;Benjamin Sambale","doi":"10.1007/s00013-024-01974-2","DOIUrl":null,"url":null,"abstract":"<div><p>The solvable conjugacy class graph of a finite group <i>G</i>, denoted by <span>\\(\\Gamma _{sc}(G)\\)</span>, is a simple undirected graph whose vertices are the non-trivial conjugacy classes of <i>G</i> and two distinct conjugacy classes <i>C</i>, <i>D</i> are adjacent if there exist <span>\\(x \\in C\\)</span> and <span>\\(y \\in D\\)</span> such that <span>\\(\\langle x, y\\rangle \\)</span> is solvable. In this paper, we discuss certain properties of the genus and crosscap of <span>\\(\\Gamma _{sc}(G)\\)</span> for the groups <span>\\(D_{2n}\\)</span>, <span>\\(Q_{4n}\\)</span>, <span>\\(S_n\\)</span>, <span>\\(A_n\\)</span>, and <span>\\({{\\,\\mathrm{\\mathop {\\textrm{PSL}}}\\,}}(2,2^d)\\)</span>. In particular, we determine all positive integers <i>n</i> such that their solvable conjugacy class graphs are planar, toroidal, double-toroidal, or triple-toroidal. We shall also obtain a lower bound for the genus of <span>\\(\\Gamma _{sc}(G)\\)</span> in terms of the order of the center and number of conjugacy classes for certain groups. As a consequence, we shall derive a relation between the genus of <span>\\(\\Gamma _{sc}(G)\\)</span> and the commuting probability of certain finite non-solvable group.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genus and crosscap of solvable conjugacy class graphs of finite groups\",\"authors\":\"Parthajit Bhowal,&nbsp;Peter J. Cameron,&nbsp;Rajat Kanti Nath,&nbsp;Benjamin Sambale\",\"doi\":\"10.1007/s00013-024-01974-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solvable conjugacy class graph of a finite group <i>G</i>, denoted by <span>\\\\(\\\\Gamma _{sc}(G)\\\\)</span>, is a simple undirected graph whose vertices are the non-trivial conjugacy classes of <i>G</i> and two distinct conjugacy classes <i>C</i>, <i>D</i> are adjacent if there exist <span>\\\\(x \\\\in C\\\\)</span> and <span>\\\\(y \\\\in D\\\\)</span> such that <span>\\\\(\\\\langle x, y\\\\rangle \\\\)</span> is solvable. In this paper, we discuss certain properties of the genus and crosscap of <span>\\\\(\\\\Gamma _{sc}(G)\\\\)</span> for the groups <span>\\\\(D_{2n}\\\\)</span>, <span>\\\\(Q_{4n}\\\\)</span>, <span>\\\\(S_n\\\\)</span>, <span>\\\\(A_n\\\\)</span>, and <span>\\\\({{\\\\,\\\\mathrm{\\\\mathop {\\\\textrm{PSL}}}\\\\,}}(2,2^d)\\\\)</span>. In particular, we determine all positive integers <i>n</i> such that their solvable conjugacy class graphs are planar, toroidal, double-toroidal, or triple-toroidal. We shall also obtain a lower bound for the genus of <span>\\\\(\\\\Gamma _{sc}(G)\\\\)</span> in terms of the order of the center and number of conjugacy classes for certain groups. As a consequence, we shall derive a relation between the genus of <span>\\\\(\\\\Gamma _{sc}(G)\\\\)</span> and the commuting probability of certain finite non-solvable group.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 5\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01974-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01974-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 有限群 G 的可解共轭类图,用 \(\Gamma _{sc}(G)\) 表示。如果存在 \(x 在 C\) 和 \(y 在 D\) 使得 \(angle x, y\rangle\) 是可解的,那么两个不同的共轭类 C, D 是相邻的。在本文中,我们讨论了群\(D_{2n}\) ,\(Q_{4n}\) ,\(S_n\) ,\(A_n\) ,和\({{,\mathrm{mathop {\textrm{PSL}}} (2,2^d)\的\(\Gamma _{sc}(G))的属和交叉盖的某些性质。特别是,我们将确定所有正整数 n,使得它们的可解共轭类图都是平面图、环状图、双环状图或三环状图。我们还将根据某些群的中心阶和共轭类数,得到 \(\Gamma _{sc}(G)\) 的属的下限。因此,我们将得出 \(\Gamma _{sc}(G)\) 的属与某些有限不可解群的共轭概率之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genus and crosscap of solvable conjugacy class graphs of finite groups

Genus and crosscap of solvable conjugacy class graphs of finite groups

The solvable conjugacy class graph of a finite group G, denoted by \(\Gamma _{sc}(G)\), is a simple undirected graph whose vertices are the non-trivial conjugacy classes of G and two distinct conjugacy classes CD are adjacent if there exist \(x \in C\) and \(y \in D\) such that \(\langle x, y\rangle \) is solvable. In this paper, we discuss certain properties of the genus and crosscap of \(\Gamma _{sc}(G)\) for the groups \(D_{2n}\), \(Q_{4n}\), \(S_n\), \(A_n\), and \({{\,\mathrm{\mathop {\textrm{PSL}}}\,}}(2,2^d)\). In particular, we determine all positive integers n such that their solvable conjugacy class graphs are planar, toroidal, double-toroidal, or triple-toroidal. We shall also obtain a lower bound for the genus of \(\Gamma _{sc}(G)\) in terms of the order of the center and number of conjugacy classes for certain groups. As a consequence, we shall derive a relation between the genus of \(\Gamma _{sc}(G)\) and the commuting probability of certain finite non-solvable group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信