利用量化赋值进行点云注册

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ecenur Oğuz, Yalım Doğan, Uğur Güdükbay, Oya Karaşan, Mustafa Pınar
{"title":"利用量化赋值进行点云注册","authors":"Ecenur Oğuz, Yalım Doğan, Uğur Güdükbay, Oya Karaşan, Mustafa Pınar","doi":"10.1007/s00138-024-01517-3","DOIUrl":null,"url":null,"abstract":"<p>Point cloud registration is a fundamental problem in computer vision. The problem encompasses critical tasks such as feature estimation, correspondence matching, and transformation estimation. The point cloud registration problem can be cast as a quantile matching problem. We refined the quantile assignment algorithm by integrating prevalent feature descriptors and transformation estimation methods to enhance the correspondence between the source and target point clouds. We evaluated the performances of these descriptors and methods with our approach through controlled experiments on a dataset we constructed using well-known 3D models. This systematic investigation led us to identify the most suitable methods for complementing our approach. Subsequently, we devised a new end-to-end, coarse-to-fine pairwise point cloud registration framework. Finally, we tested our framework on indoor and outdoor benchmark datasets and compared our results with state-of-the-art point cloud registration methods.\n</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"40 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point cloud registration with quantile assignment\",\"authors\":\"Ecenur Oğuz, Yalım Doğan, Uğur Güdükbay, Oya Karaşan, Mustafa Pınar\",\"doi\":\"10.1007/s00138-024-01517-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Point cloud registration is a fundamental problem in computer vision. The problem encompasses critical tasks such as feature estimation, correspondence matching, and transformation estimation. The point cloud registration problem can be cast as a quantile matching problem. We refined the quantile assignment algorithm by integrating prevalent feature descriptors and transformation estimation methods to enhance the correspondence between the source and target point clouds. We evaluated the performances of these descriptors and methods with our approach through controlled experiments on a dataset we constructed using well-known 3D models. This systematic investigation led us to identify the most suitable methods for complementing our approach. Subsequently, we devised a new end-to-end, coarse-to-fine pairwise point cloud registration framework. Finally, we tested our framework on indoor and outdoor benchmark datasets and compared our results with state-of-the-art point cloud registration methods.\\n</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01517-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01517-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

点云注册是计算机视觉中的一个基本问题。该问题包括特征估计、对应匹配和变换估计等关键任务。点云注册问题可以看作是一个量化匹配问题。我们通过整合流行的特征描述和变换估计方法,改进了量子分配算法,以提高源点云和目标点云之间的对应性。我们通过在利用著名 3D 模型构建的数据集上进行对照实验,评估了这些描述符和方法与我们的方法的性能。这一系统性调查使我们确定了最适合补充我们方法的方法。随后,我们设计了一个新的端到端、粗到细的点云配对注册框架。最后,我们在室内和室外基准数据集上测试了我们的框架,并将结果与最先进的点云配准方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Point cloud registration with quantile assignment

Point cloud registration with quantile assignment

Point cloud registration is a fundamental problem in computer vision. The problem encompasses critical tasks such as feature estimation, correspondence matching, and transformation estimation. The point cloud registration problem can be cast as a quantile matching problem. We refined the quantile assignment algorithm by integrating prevalent feature descriptors and transformation estimation methods to enhance the correspondence between the source and target point clouds. We evaluated the performances of these descriptors and methods with our approach through controlled experiments on a dataset we constructed using well-known 3D models. This systematic investigation led us to identify the most suitable methods for complementing our approach. Subsequently, we devised a new end-to-end, coarse-to-fine pairwise point cloud registration framework. Finally, we tested our framework on indoor and outdoor benchmark datasets and compared our results with state-of-the-art point cloud registration methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信