{"title":"涉及奇次谐波数和二项式系数的和的求值","authors":"W. Zheng, Y. Yang","doi":"10.1007/s10476-024-00011-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend tools developed in [9] to study Euler <i>T</i>-type sums involving odd harmonic numbers and binomial coefficients. In particular, we will prove that two kinds of Euler <i>T</i>-type sums can be expressed in terms of log(2), zeta values, double <i>T</i>-values, (odd) harmonic numbers and double <i>T</i>-sums.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 1","pages":"323 - 334"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluations of sums involving odd harmonic numbers and binomial coefficients\",\"authors\":\"W. Zheng, Y. Yang\",\"doi\":\"10.1007/s10476-024-00011-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we extend tools developed in [9] to study Euler <i>T</i>-type sums involving odd harmonic numbers and binomial coefficients. In particular, we will prove that two kinds of Euler <i>T</i>-type sums can be expressed in terms of log(2), zeta values, double <i>T</i>-values, (odd) harmonic numbers and double <i>T</i>-sums.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"50 1\",\"pages\":\"323 - 334\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00011-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00011-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文扩展了 [9] 中开发的工具,以研究涉及奇次谐波数和二项式系数的欧拉 T 型和。特别是,我们将证明有两种欧拉 T 型和可以用 log(2)、zeta 值、双 T 值、(奇)谐波数和双 T 和来表示。
Evaluations of sums involving odd harmonic numbers and binomial coefficients
In this paper, we extend tools developed in [9] to study Euler T-type sums involving odd harmonic numbers and binomial coefficients. In particular, we will prove that two kinds of Euler T-type sums can be expressed in terms of log(2), zeta values, double T-values, (odd) harmonic numbers and double T-sums.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.