非线性接触率、隔离率和疫苗接种率取决于媒体报道的 SSvEIQR 模型的动态分析

IF 2.4 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yantao Luo, Pengfei Liu, Tingting Zheng, Zhidong Teng
{"title":"非线性接触率、隔离率和疫苗接种率取决于媒体报道的 SSvEIQR 模型的动态分析","authors":"Yantao Luo, Pengfei Liu, Tingting Zheng, Zhidong Teng","doi":"10.1142/s1793524524500116","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study an SS<sub><i>v</i></sub>EIQR model with nonlinear contact rate, isolation rate and vaccination rate driven by media coverage. First, the basic reproduction number <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> is derived. Then, the threshold dynamics of the disease are obtained in terms of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>: when <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></math></span><span></span>, the global stability of the disease-free equilibrium is obtained by constructing an appropriate Lyapunov function; when <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, the sufficient conditions to prove the globally stability of endemic equilibrium are obtained by applying the geometric method into the four-dimensional system, which needs to estimate the Lozinski<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>ǐ</mi></math></span><span></span> measure of a <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>6</mn><mo stretchy=\"false\">×</mo><mn>6</mn></math></span><span></span> matrix. Further, we conduct some numerical simulations to validate our theoretical results, and analyze the impact of media coverage on disease transmission, the results show that media coverage could effectively suppress the spread of the disease and reduce the number of infected individuals. Finally, through the sensitivity analysis of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, we obtain some measures to control the spread of the disease, such as reducing contact, strengthening isolation and vaccination.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"121 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic analysis of an SSvEIQR model with nonlinear contact rate, isolation rate and vaccination rate dependent on media coverage\",\"authors\":\"Yantao Luo, Pengfei Liu, Tingting Zheng, Zhidong Teng\",\"doi\":\"10.1142/s1793524524500116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study an SS<sub><i>v</i></sub>EIQR model with nonlinear contact rate, isolation rate and vaccination rate driven by media coverage. First, the basic reproduction number <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> is derived. Then, the threshold dynamics of the disease are obtained in terms of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>: when <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></math></span><span></span>, the global stability of the disease-free equilibrium is obtained by constructing an appropriate Lyapunov function; when <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, the sufficient conditions to prove the globally stability of endemic equilibrium are obtained by applying the geometric method into the four-dimensional system, which needs to estimate the Lozinski<span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ǐ</mi></math></span><span></span> measure of a <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>6</mn><mo stretchy=\\\"false\\\">×</mo><mn>6</mn></math></span><span></span> matrix. Further, we conduct some numerical simulations to validate our theoretical results, and analyze the impact of media coverage on disease transmission, the results show that media coverage could effectively suppress the spread of the disease and reduce the number of infected individuals. Finally, through the sensitivity analysis of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, we obtain some measures to control the spread of the disease, such as reducing contact, strengthening isolation and vaccination.</p>\",\"PeriodicalId\":49273,\"journal\":{\"name\":\"International Journal of Biomathematics\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524524500116\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524524500116","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个由媒体报道驱动的具有非线性接触率、隔离率和接种率的 SSvEIQR 模型。首先,得出基本繁殖数 R0。当 R0≤1 时,通过构造适当的 Lyapunov 函数,可以得到无病平衡的全局稳定性;当 R0>1 时,将几何方法应用于四维系统,需要估计 6×6 矩阵的 Lozinskiǐ 量,从而得到证明流行平衡全局稳定性的充分条件。此外,我们还进行了一些数值模拟来验证我们的理论结果,并分析了媒体报道对疾病传播的影响,结果表明媒体报道可以有效抑制疾病的传播,减少感染个体的数量。最后,通过对 R0 的敏感性分析,我们得出了一些控制疾病传播的措施,如减少接触、加强隔离和接种疫苗等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic analysis of an SSvEIQR model with nonlinear contact rate, isolation rate and vaccination rate dependent on media coverage

In this paper, we study an SSvEIQR model with nonlinear contact rate, isolation rate and vaccination rate driven by media coverage. First, the basic reproduction number R0 is derived. Then, the threshold dynamics of the disease are obtained in terms of R0: when R01, the global stability of the disease-free equilibrium is obtained by constructing an appropriate Lyapunov function; when R0>1, the sufficient conditions to prove the globally stability of endemic equilibrium are obtained by applying the geometric method into the four-dimensional system, which needs to estimate the Lozinskiǐ measure of a 6×6 matrix. Further, we conduct some numerical simulations to validate our theoretical results, and analyze the impact of media coverage on disease transmission, the results show that media coverage could effectively suppress the spread of the disease and reduce the number of infected individuals. Finally, through the sensitivity analysis of R0, we obtain some measures to control the spread of the disease, such as reducing contact, strengthening isolation and vaccination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biomathematics
International Journal of Biomathematics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.70
自引率
13.60%
发文量
820
审稿时长
7.5 months
期刊介绍: The goal of this journal is to present the latest achievements in biomathematics, facilitate international academic exchanges and promote the development of biomathematics. Its research fields include mathematical ecology, infectious disease dynamical system, biostatistics and bioinformatics. Only original papers will be considered. Submission of a manuscript indicates a tacit understanding that the paper is not actively under consideration for publication with other journals. As submission and reviewing processes are handled electronically whenever possible, the journal promises rapid publication of articles. The International Journal of Biomathematics is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信