从非稳态流中学习流形

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Suchismit Mahapatra, Varun Chandola
{"title":"从非稳态流中学习流形","authors":"Suchismit Mahapatra, Varun Chandola","doi":"10.1186/s40537-023-00872-8","DOIUrl":null,"url":null,"abstract":"<p>Streaming adaptations of manifold learning based dimensionality reduction methods, such as <i>Isomap</i>, are based on the assumption that a small initial batch of observations is enough for exact learning of the manifold, while remaining streaming data instances can be cheaply mapped to this manifold. However, there are no theoretical results to show that this core assumption is valid. Moreover, such methods typically assume that the underlying data distribution is stationary and are not equipped to detect, or handle, sudden changes or gradual drifts in the distribution that may occur when the data is streaming. We present theoretical results to show that the quality of a manifold asymptotically converges as the size of data increases. We then show that a Gaussian Process Regression (GPR) model, that uses a manifold-specific kernel function and is trained on an initial batch of sufficient size, can closely approximate the state-of-art streaming Isomap algorithms, and the predictive variance obtained from the GPR prediction can be employed as an effective detector of changes in the underlying data distribution. Results on several synthetic and real data sets show that the resulting algorithm can effectively learn lower dimensional representation of high dimensional data in a streaming setting, while identifying shifts in the generative distribution. For instance, key findings on a Gas sensor array data set show that our method can detect changes in the underlying data stream, triggered due to real-world factors, such as introduction of a new gas in the system, while efficiently mapping data on a low-dimensional manifold.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"26 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning manifolds from non-stationary streams\",\"authors\":\"Suchismit Mahapatra, Varun Chandola\",\"doi\":\"10.1186/s40537-023-00872-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Streaming adaptations of manifold learning based dimensionality reduction methods, such as <i>Isomap</i>, are based on the assumption that a small initial batch of observations is enough for exact learning of the manifold, while remaining streaming data instances can be cheaply mapped to this manifold. However, there are no theoretical results to show that this core assumption is valid. Moreover, such methods typically assume that the underlying data distribution is stationary and are not equipped to detect, or handle, sudden changes or gradual drifts in the distribution that may occur when the data is streaming. We present theoretical results to show that the quality of a manifold asymptotically converges as the size of data increases. We then show that a Gaussian Process Regression (GPR) model, that uses a manifold-specific kernel function and is trained on an initial batch of sufficient size, can closely approximate the state-of-art streaming Isomap algorithms, and the predictive variance obtained from the GPR prediction can be employed as an effective detector of changes in the underlying data distribution. Results on several synthetic and real data sets show that the resulting algorithm can effectively learn lower dimensional representation of high dimensional data in a streaming setting, while identifying shifts in the generative distribution. For instance, key findings on a Gas sensor array data set show that our method can detect changes in the underlying data stream, triggered due to real-world factors, such as introduction of a new gas in the system, while efficiently mapping data on a low-dimensional manifold.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-023-00872-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-023-00872-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基于流形学习的流适应降维方法(如 Isomap)所依据的假设是,一小批初始观测数据足以精确学习流形,而剩余的流数据实例可以廉价地映射到该流形上。然而,目前还没有理论结果表明这一核心假设是成立的。此外,这类方法通常假定底层数据分布是静态的,无法检测或处理数据流时可能出现的分布突变或渐变。我们提出的理论结果表明,随着数据量的增加,流形的质量会逐渐收敛。然后我们证明,使用特定流形核函数并在足够大的初始批次上进行训练的高斯过程回归(GPR)模型可以近似于最先进的流式 Isomap 算法,而且从 GPR 预测中获得的预测方差可以用作底层数据分布变化的有效检测器。在几个合成和真实数据集上的结果表明,由此产生的算法可以在流式环境中有效地学习高维数据的低维表示,同时识别生成分布的变化。例如,在气体传感器阵列数据集上的主要研究结果表明,我们的方法可以检测到由于真实世界因素(如系统中引入新气体)而引发的底层数据流的变化,同时有效地将数据映射到低维流形上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning manifolds from non-stationary streams

Learning manifolds from non-stationary streams

Streaming adaptations of manifold learning based dimensionality reduction methods, such as Isomap, are based on the assumption that a small initial batch of observations is enough for exact learning of the manifold, while remaining streaming data instances can be cheaply mapped to this manifold. However, there are no theoretical results to show that this core assumption is valid. Moreover, such methods typically assume that the underlying data distribution is stationary and are not equipped to detect, or handle, sudden changes or gradual drifts in the distribution that may occur when the data is streaming. We present theoretical results to show that the quality of a manifold asymptotically converges as the size of data increases. We then show that a Gaussian Process Regression (GPR) model, that uses a manifold-specific kernel function and is trained on an initial batch of sufficient size, can closely approximate the state-of-art streaming Isomap algorithms, and the predictive variance obtained from the GPR prediction can be employed as an effective detector of changes in the underlying data distribution. Results on several synthetic and real data sets show that the resulting algorithm can effectively learn lower dimensional representation of high dimensional data in a streaming setting, while identifying shifts in the generative distribution. For instance, key findings on a Gas sensor array data set show that our method can detect changes in the underlying data stream, triggered due to real-world factors, such as introduction of a new gas in the system, while efficiently mapping data on a low-dimensional manifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信