论积分平均数的收敛与发散现象并存以及在傅立叶-哈尔数列中的应用

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Hirayama, D. Karagulyan
{"title":"论积分平均数的收敛与发散现象并存以及在傅立叶-哈尔数列中的应用","authors":"M. Hirayama,&nbsp;D. Karagulyan","doi":"10.1007/s10476-024-00010-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(C,D\\subset \\mathbb{N}\\)</span> be disjoint sets, and <span>\\(\\mathcal{C}=\\{1/2^{c}\\colon c\\in C\\}, \\mathcal{D}=\\{1/2^{d}\\colon d\\in D\\}\\)</span>. \nWe consider the associate bases of dyadic, axis-parallel rectangles <span>\\(\\mathcal{R}_{\\mathcal{C}}\\)</span> and <span>\\(\\mathcal{R}_{\\mathcal{D}}\\)</span>. \nWe give necessary and sufficient conditions on the sets <span>\\(\\mathcal{C} and \\mathcal{D}\\)</span> such that there is a positive function <span>\\(f\\in L^{1}([0,1)^{2})\\)</span> so that the integral averages are convergent with respect to <span>\\(\\mathcal{R}_{\\mathcal{C}}\\)</span> and divergent for <span>\\(\\mathcal{R}_{\\mathcal{D}}\\)</span>. \nWe next apply our results to the two-dimensional Fourier--Haar series and characterize convergent and divergent sub-indices. \nThe proof is based on some constructions from the theory of low-discrepancy sequences such as the van der Corput sequence and an associated tiling of the unit square.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the coexistence of convergence and divergence phenomena for integral averages and an application to the Fourier–Haar series\",\"authors\":\"M. Hirayama,&nbsp;D. Karagulyan\",\"doi\":\"10.1007/s10476-024-00010-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(C,D\\\\subset \\\\mathbb{N}\\\\)</span> be disjoint sets, and <span>\\\\(\\\\mathcal{C}=\\\\{1/2^{c}\\\\colon c\\\\in C\\\\}, \\\\mathcal{D}=\\\\{1/2^{d}\\\\colon d\\\\in D\\\\}\\\\)</span>. \\nWe consider the associate bases of dyadic, axis-parallel rectangles <span>\\\\(\\\\mathcal{R}_{\\\\mathcal{C}}\\\\)</span> and <span>\\\\(\\\\mathcal{R}_{\\\\mathcal{D}}\\\\)</span>. \\nWe give necessary and sufficient conditions on the sets <span>\\\\(\\\\mathcal{C} and \\\\mathcal{D}\\\\)</span> such that there is a positive function <span>\\\\(f\\\\in L^{1}([0,1)^{2})\\\\)</span> so that the integral averages are convergent with respect to <span>\\\\(\\\\mathcal{R}_{\\\\mathcal{C}}\\\\)</span> and divergent for <span>\\\\(\\\\mathcal{R}_{\\\\mathcal{D}}\\\\)</span>. \\nWe next apply our results to the two-dimensional Fourier--Haar series and characterize convergent and divergent sub-indices. \\nThe proof is based on some constructions from the theory of low-discrepancy sequences such as the van der Corput sequence and an associated tiling of the unit square.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00010-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00010-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(C,D子集)是互不相交的集合,并且(\mathcal{C}=\{1/2^{c}\colon c\in C},\mathcal{D}=\{1/2^{d}\colon d\in D})是互不相交的集合。我们考虑了对偶、轴平行矩形 \(\mathcal{R}_{mathcal{C}}\)和 \(\mathcal{R}_{mathcal{D}}\)的联基。我们给出了集合 \(\mathcal{C} and \mathcal{D}\) 的必要条件和充分条件,即存在一个正函数 \(f\in L^{1}([0,1)^{2})\) 使得积分平均数对于 \(\mathcal{R}_{mathcal{C}}\) 是收敛的,而对于 \(\mathcal{R}_{mathcal{D}}\) 是发散的。接下来,我们将我们的结果应用于二维傅里叶--哈氏级数,并描述收敛和发散子指数的特征。证明基于低发散序列理论中的一些构造,例如范德尔科普特序列和单位平方的相关平铺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the coexistence of convergence and divergence phenomena for integral averages and an application to the Fourier–Haar series

Let \(C,D\subset \mathbb{N}\) be disjoint sets, and \(\mathcal{C}=\{1/2^{c}\colon c\in C\}, \mathcal{D}=\{1/2^{d}\colon d\in D\}\). We consider the associate bases of dyadic, axis-parallel rectangles \(\mathcal{R}_{\mathcal{C}}\) and \(\mathcal{R}_{\mathcal{D}}\). We give necessary and sufficient conditions on the sets \(\mathcal{C} and \mathcal{D}\) such that there is a positive function \(f\in L^{1}([0,1)^{2})\) so that the integral averages are convergent with respect to \(\mathcal{R}_{\mathcal{C}}\) and divergent for \(\mathcal{R}_{\mathcal{D}}\). We next apply our results to the two-dimensional Fourier--Haar series and characterize convergent and divergent sub-indices. The proof is based on some constructions from the theory of low-discrepancy sequences such as the van der Corput sequence and an associated tiling of the unit square.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信