通过具有扰动湮没功能的 DREM 自适应重构非线性系统状态

Anton Glushchenko, Konstantin Lastochkin
{"title":"通过具有扰动湮没功能的 DREM 自适应重构非线性系统状态","authors":"Anton Glushchenko, Konstantin Lastochkin","doi":"arxiv-2403.13664","DOIUrl":null,"url":null,"abstract":"A new adaptive observer is proposed for a certain class of nonlinear systems\nwith bounded unknown input and parametric uncertainty. Unlike most existing\nsolutions, the proposed approach ensures asymptotic convergence of the unknown\nparameters, state and perturbation estimates to an arbitrarily small\nneighborhood of the equilibrium point. The solution is based on the novel\naugmentation of a high-gain observer with the dynamic regressor extension and\nmixing (DREM) procedure enhanced with a perturbation annihilation algorithm.\nThe aforementioned properties of the proposed solution are verified via\nnumerical experiments.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"9 48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Reconstruction of Nonlinear Systems States via DREM with Perturbation Annihilation\",\"authors\":\"Anton Glushchenko, Konstantin Lastochkin\",\"doi\":\"arxiv-2403.13664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new adaptive observer is proposed for a certain class of nonlinear systems\\nwith bounded unknown input and parametric uncertainty. Unlike most existing\\nsolutions, the proposed approach ensures asymptotic convergence of the unknown\\nparameters, state and perturbation estimates to an arbitrarily small\\nneighborhood of the equilibrium point. The solution is based on the novel\\naugmentation of a high-gain observer with the dynamic regressor extension and\\nmixing (DREM) procedure enhanced with a perturbation annihilation algorithm.\\nThe aforementioned properties of the proposed solution are verified via\\nnumerical experiments.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"9 48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.13664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对某类具有有界未知输入和参数不确定性的非线性系统,提出了一种新的自适应观测器。与大多数现有解决方案不同,所提出的方法可确保未知参数、状态和扰动估计值渐进收敛到平衡点的任意小邻域。该解决方案基于高增益观测器与动态回归器扩展和混合(DREM)程序的新扩展,并使用扰动湮灭算法进行了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Reconstruction of Nonlinear Systems States via DREM with Perturbation Annihilation
A new adaptive observer is proposed for a certain class of nonlinear systems with bounded unknown input and parametric uncertainty. Unlike most existing solutions, the proposed approach ensures asymptotic convergence of the unknown parameters, state and perturbation estimates to an arbitrarily small neighborhood of the equilibrium point. The solution is based on the novel augmentation of a high-gain observer with the dynamic regressor extension and mixing (DREM) procedure enhanced with a perturbation annihilation algorithm. The aforementioned properties of the proposed solution are verified via numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信